A Web-Based Intelligent System for Geometric Discovery

  • Francisco Botana
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 2657)

Abstract

An open web-based tool for automatic discovery in elementary Euclidean geometry, webDiscovery, is described. It is based in recent findings in automatic discovery in geometry. A user-defined geometric construction is uploaded to a Java Servlet server, where two computer algebra systems, CoCoA and Mathematica, return the discovered facts about the construction. webDiscovery can be efficiently used in mathematics education, linkage design and testing and computer aided geometric design. The system can be tested at rosalia.uvigo.es/sdge/web/2D.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Botana, F., Valcarce, J.L.: A dynamic-symbolic interface for geometric theorem discovery. Computers and Education, 38(1–3), 21–35 (2002)CrossRefGoogle Scholar
  2. 2.
    Botana, F.: Interactive versus symbolic approaches to plane loci generation in dynamic geometry environments. Proc. I Int. Workshop on Computer Graphics and Geometric Modelling CGGM’2002, Lecture Notes in Computer Science, 2330, 211–218 (2002)Google Scholar
  3. 3.
    Botana, F., Valcarce, J.L.: A software tool for the investigation of plane loci. Mathematics and Computers in Simulation, 61(2), 141–154 (2003)CrossRefMathSciNetGoogle Scholar
  4. 4.
    Buchberger, B.: Groebner bases: an algorithmic method in polynomial ideal theory. In N.K. Bose, Multidimensional systems theory, Reidel, Dordrecht, 184–232 (1985)Google Scholar
  5. 5.
    Capani, A., Niesi, G., Robbiano, L.: CoCoA, a system for doing Computations in Commutative Algebra. Available via anonymous ftp from: ftp://ftp:cocoa.dima.unige.it
  6. 6.
    Chou, S.C.: Mechanical Geometry Theorem Proving. Reidel, Dordrecht (1988)MATHGoogle Scholar
  7. 7.
    Chou, S.C., Gao, X.S., Zhang, J.Z.: Machine Proofs in Geometry. World Scientific, Singapore (1988)Google Scholar
  8. 8.
    Gao, X.S., Zhang, J.Z., Chou, S.C.: Geometry Expert. Nine Chapters, Taiwan (1998)Google Scholar
  9. 9.
    Gerlentner, H., Hansen, J.R., Loveland, D.W.: Empirical explorations of the geometry theorem proving machine. Proc. West. Joint Computer Conf., 143–147 (1960)Google Scholar
  10. 10.
    Guzmán, M.: An extension of the Wallace-Simson theorem: projecting in arbitrary directions. American Mathematical Monthly, 106(6), 574–580 (1999)MATHCrossRefMathSciNetGoogle Scholar
  11. 11.
    Hanna, G.: Proof, explanation and exploration: an overview. Educational Studies in Mathematics, 44(1–2), 5–23 (2002)Google Scholar
  12. 12.
    Jackiw, N.: The Geometer’s Sketchpad v 4.0. Key Curriculum Press, Berkeley (2002)Google Scholar
  13. 13.
    Kapur, D.: Using Groebner bases to reason about geometry problems. Journal of Symbolic Computation, 2, 399–408 (1986)MATHCrossRefMathSciNetGoogle Scholar
  14. 14.
    Kapur, D.: A refutational approach to geometry theorem proving. Artificial Intelligence, 37, 61–93 (1988)MATHCrossRefMathSciNetGoogle Scholar
  15. 15.
    Kapur, D., Mundy, J.L.: Wu’s method and its application to perspective viewing. Artificial Intelligence, 37, 15–36 (1988)MATHCrossRefMathSciNetGoogle Scholar
  16. 16.
    King, J., Schattschneider, D.:Geometry Turned On. MAA, Washington (1997)MATHGoogle Scholar
  17. 17.
    Laborde, J. M., Bellemain, F.: Cabri Geometry II. Texas Instruments, Dallas (1998)Google Scholar
  18. 18.
    Laborde, J.M., Straesser, R.: Cabri Géomètre, a microworld of geometry for guided discovery learning. Zentralblatt für Didaktik der Mathematik, 22(5), 171–177 (1990)Google Scholar
  19. 19.
    Laborde, C.: Dynamic geometry environments as a source of rich learning contexts for the complex activity of proving. Educational Studies in Mathematics, 44(1–2), 151–161 (2002)Google Scholar
  20. 20.
    Nevins, A.J.: Plane geometry theorem proving using forward chaining. Artificial Intelligence, 6, 1–23 (1975)MATHCrossRefMathSciNetGoogle Scholar
  21. 21.
    Recio, T., Vélez, M. P.: Automatic discovery of theorems in elementary geometry. Journal of Automated Reasoning, 23, 63–82 (1999)MATHCrossRefMathSciNetGoogle Scholar
  22. 22.
    Reiter, R.: A semantically guided deductive system for automatic theorem proving. IEEE Transactions on Computers, C-25(4), 328–334 (1976)MathSciNetCrossRefGoogle Scholar
  23. 23.
    Richter-Gebert, J., Kortenkamp, U.: The Interactive Geometry Software Cinderella. Springer, Berlin (1999)Google Scholar
  24. 24.
    Valcarce, J.L., Botana, F.: webREX. Available from: http://rosalia.uvigo.es/sdge/web/2D/webREXDemo.zip
  25. 25.
    Wu, W. T.: Mechanical Theorem Proving in Geometries. Springer, Vienna (1994)MATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2003

Authors and Affiliations

  • Francisco Botana
    • 1
  1. 1.Departamento de Matemática Aplicada IUniversidad de VigoPontevedraSpain

Personalised recommendations