Computing Maximal Tori Using LiE and Mathematica

  • Alfred G. Noël
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 2657)

Abstract

This paper describes an algorithm for computing maximal tori of the reductive centralizer of a nilpotent element of an exceptional complex symmetric space. It illustrates also a good example of the use of Computer Algebra Systems to help answer important questions in the field of pure mathematics. Such tori play a fundamental rôle in several problems such as: classification of nilpotent orbits of real Lie groups, description of admissible nilpotent orbits of real Lie groups, classification of spherical nilpotent orbits, determination of component groups of centralizers of nilpotents in symmetric spaces.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Auslander L., Kostant B.: Polarization and unitary representations of solvable Lie groups Invent. Math. 14 (1971) 255–354MATHCrossRefMathSciNetGoogle Scholar
  2. 2.
    Bourbaki N.: Groupes et Algèbre de Lie Chapitres 4,5,6, Elements de mathématique. MASSON (198)Google Scholar
  3. 3.
    Duflo M.: Construction de représentations unitaires dún groupe de Lie, Harmonic Analysis and Group Representations, C.I.M.E. (1982)Google Scholar
  4. 4.
    Djoković D.: Classification of nilpotent elements in simple exceptional real Lie algebras of inner type and description of their centralizers, J. Alg. 112 (1987) 577–585Google Scholar
  5. 5.
    Djoković D.: Classification of nilpotent elements in simple real Lie algebras E 6(6) and E 6(−26) and description of their centralizers J. Alg. 116 (1988) 196–207CrossRefMATHGoogle Scholar
  6. 6.
    Kirillov A. A.: Unitary representations of nilpotent Lie groups Russian Math. Surveys 17 (1962) 57–110CrossRefMathSciNetGoogle Scholar
  7. 7.
    King D. R.: The Component Groups of Nilpotents in Exceptional Simple Real Lie Algebras Communications In Algebra 20(1) (1992) 219–284MATHCrossRefMathSciNetGoogle Scholar
  8. 8.
    King D. R.: Spherical nilpotent orbits and the Kostant-Sekiguchi correspondence To appear in Trans. Amer. Soc.Google Scholar
  9. 9.
    King D. R.: Classification of spherical nilpotent orbits in complex symmetric space submittedGoogle Scholar
  10. 10.
    King D. R., Noël A. G.: Component Groups of Centralizers of Nilpotents in Complex Symmetric Spaces Journal of Algebra 232 (2000) 94–125MATHCrossRefMathSciNetGoogle Scholar
  11. 11.
    Knapp A. W.:Lie Groups Beyound an Introduction Birkhäuser, Progress in Mathematics Boston 140 (1996)Google Scholar
  12. 12.
    Kostant B., Rallis S.: Orbits and Representations associated with symmetric spaces Amer. J. Math. 93 (1971) 753–809MATHCrossRefMathSciNetGoogle Scholar
  13. 13.
    Noel A. G.: Nilpotent orbits and theta-stable parabolic Subalgebras AMS Journal of representation theory 2 (1998) 1–32MATHCrossRefMathSciNetGoogle Scholar
  14. 14.
    Noël A. G.: Classification of Admissible Nilpotent Orbits In simple Exceptional real Lie algebras of Inner type AMS Journal of Representation Theory 5 (2001) 455–493MATHCrossRefGoogle Scholar
  15. 15.
    Noël A. G.: Classification of Admissible Nilpotent Orbits In simple real Lie algebras E 6(6) and E 6(−26) AMS Journal of Representation Theory 5 (2001) 494–502MATHCrossRefGoogle Scholar
  16. 16.
    Ohta T.: Classification of admissible nilpotent orbits in the classical real Lie algebras J. of Algebra 136, No. 1 (1991) 290–333MATHCrossRefGoogle Scholar
  17. 17.
    Schwartz J.: The determination of the admissible nilpotent orbits in real classical groups Ph. D. Thesis M.I.T. Cambridge, MA (1987)Google Scholar
  18. 18.
    Van Leeuwen M. A. A., Cohen A. M., Lisser B.:LiE Apackage for Lie Group Computations Computer Algebra Nederland, Amsterdam The Netherlands (1992)Google Scholar
  19. 19.
    Vogan D. jr: Unitary representations of reductive groups Annals of Mathematical Studies, Princeton University Press Study 118 (1987)Google Scholar
  20. 20.
    Vogan D. jr: Associated varieties and unipotent representations Harmonic Analysis on Reductive Groups Birkhäuser, Boston-Basel-Berlin (1991) 315–388Google Scholar
  21. 21.
    Wolfram S.: The Mathematica Book Wolfram media, Cambridge University Press (1998)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2003

Authors and Affiliations

  • Alfred G. Noël
    • 1
  1. 1.Department of MathematicsThe University of MassachusettsBostonUSA

Personalised recommendations