A Problem Solving Environment for Modelling Stony Coral Morphogenesis

  • Roeland Merks
  • Alfons Hoekstra
  • Jaap Kaandorp
  • Peter Sloot
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 2657)


Apart from experimental and theoretical approaches, computer simulation is an important tool in testing hypotheses about stony coral growth. However, the construction and use of such simulation tools needs extensive computational skills and knowledge that is not available to most research biologists. Problem solving environments (PSEs) aim to provide a framework that hides implementation details and allows the user to formulate and analyse a problem in the language of the subject area. We have developed a prototypical PSE to study the morphogenesis of corals using a multi-model approach. In this paper we describe the design and implementation of this PSE, in which simulations of the coral’s shape and its environment have been combined. We will discuss the relevance of our results for the future development of PSEs for studying biological growth and morphogenesis.


  1. 1.
    Newman, S.A.: Developmental mechanisms: putting genes in their place. J. Biosci. 27 (2002) 97–104CrossRefGoogle Scholar
  2. 2.
    Segel, L.A.: Computing an organism. PNAS 98 (2001) 3639–3640CrossRefGoogle Scholar
  3. 3.
    Hogeweg, P.: Computing an organism: on the interface between informatic and dynamic processes. Biosystems 64 (2002) 97–109CrossRefGoogle Scholar
  4. 4.
    Kaandorp, J.A., Lowe, C.P., Frenkel, D., Sloot, P.M.A.: Effect of nutrient diffusion and flow on coral morphology. Phys. Rev. Lett. 77 (1996) 2328–2331CrossRefGoogle Scholar
  5. 5.
    Kaandorp, J., Kübler, J., eds.: The algorithmic beauty of seaweeds, sponges and corals. The virtual laboratory. Springer, Berlin Heidelberg New York (2001)Google Scholar
  6. 6.
    Kaandorp, J.A., Sloot, P.M.A.: Morphological models of radiate accretive growth and the influence of hydrodynamics. J. Theor. Biol. 209 (2001) 257–274CrossRefGoogle Scholar
  7. 7.
    Merks, R.M.H., Hoekstra, A.G., Kaandorp, J.A., Sloot, P.M.A.: Models of coral growth: Spontaneous branching, compactification and the Laplacian growth assumption. Accepted for publication in Journal of Theoretical Biology (2003)Google Scholar
  8. 8.
    Merks, R., Hoekstra, A., Kaandorp, J., Sloot, P.: Spontaneous branching in a polyp oriented model of stony coral growth. In Sloot, P., Tan, C.K., Dongarra, J.J., Hoekstra, A.G., eds.: International Conference on Computational Science (ICCS), Lecture Notes in Computer Science (LNCS). Volume 2329., Amsterdam, the Netherlands, Springer-Verlag, Berlin (2002) 88–96Google Scholar
  9. 9.
    Merks, R.M.H., Hoekstra, A.G., Kaandorp, J.A., Sloot, P.M.A.: Branching and morphologic plasticity in stony corals: the polyp oriented approach. Submitted (2002)Google Scholar
  10. 10.
    Gallopoulos, E., Houstis, E., Rice, J.R.: Computer as thinker/doer: Problem-solving environments for computational science. IEEE Comput. Sci. Eng. 1 (1994) 11–23CrossRefGoogle Scholar
  11. 11.
    Rice, J.R., Boisvert, R.F.: From scientific software libraries to problem solving environments. IEEE Comput. Sci. Eng. 3 (1996) 44–53CrossRefGoogle Scholar
  12. 12.
    Witten Jr., T., Sander, L.: Diffusion-limited aggregation, a kinetic critical phenomenon. Phys. Rev. Lett. 47 (1981) 1400–1403CrossRefGoogle Scholar
  13. 13.
    Succi, S.: The Lattice Boltzmann Equation: for Fluid Dynamics and Beyond. Numerical Mathematics and Scientific Computation. Oxford University Press, Oxford New York (2001)Google Scholar
  14. 14.
    Lowe, C.P., Frenkel, D.: The super long-time decay of velocity fluctuations in a two-dimensional fluid. Physica A 220 (1995) 251–260CrossRefGoogle Scholar
  15. 15.
    Merks, R.M.H., Hoekstra, A.G., Sloot, P.M.A.: The moment propagation method for advection-diffusion in the lattice Boltzmann method: validation and Peclet number limits. J. Comput. Phys. 183 (2002) 563–576zbMATHCrossRefGoogle Scholar
  16. 16.
    Kandhai, D., Koponen, A., Hoekstra, A.G., Kataja, M., Timonen, J., Sloot, P.M.A.: Lattice-Boltzmann hydrodynamics on parallel systems. Comput. Phys. Commun. 111 (1998) 14–26zbMATHCrossRefGoogle Scholar
  17. 17.
    Afsarmanesh, H., Belleman, R.G., Belloum, A.S.Z., Benabdelkader, A., van den Brand, J.F.J., Eijkel, G.B., Frenkel, A., Garita, C., Groep, D.L., Heeren, R.M.A., Hendrikse, Z.W., Hertzberger, L.O., Kaandorp, J.A., Kaletas, E.C., Korkhov, V., de Laat, C.T.A.M., Sloot, P.M.A., Vasunin, D., Visser, A., Yakali, H.H.: VLAM-G: A Grid-based virtual laboratory. Scientific Programming: Special Issue on Grid Computing 10 (2002) 173–181Google Scholar
  18. 18.
    Belleman, R., Stolk, B., de Vries, R.: Immersive virtual reality on commodity hardware. In Lagendijk, R., Heijnsdijk, J., Pimentel, A., Wilkinson, M., eds.: Proceedings of the 7th annual conference of the Advanced School for Computing and Imaging, Heijen, the Netherlands, Advanced School for Computing and Imaging (ASCI) (2001) 297–304Google Scholar
  19. 19.
    Mulder, J., van Liere, R.: The personal space station: Bringing interaction within reach. In: Proceedings of VRIC2002; 4th Virtual Reality International Conference, Laval, France (2002) 73–81Google Scholar
  20. 20.
    Poston, T., Serra, L.: The virtual workbench: Dextrous VR. In G. Singh, S.K.F., Thalmann, D., eds.: Proceedings of the VRST’94—Virtual Reality Software and Technology, Singapore, World Scientific (1994) 111–122Google Scholar
  21. 21.
    Cruz-Neira, C., Sandin, D., DeFanti, T.: Surround-screen projection-based virtual reality: The design and implementation of the CAVE. In: SIGGRAPH’ 93 Computer Graphics Conference, ACM SIGGRAPH (1993) 135–142Google Scholar
  22. 22.
    Kruth, J., Leu, M., Nakagawa, T.: Progress in additive manufacturing and rapid prototyping. Annals of the CIRP 47 (1998) 525–540 Keynote paper.CrossRefGoogle Scholar
  23. 23.
    Turing, A.M.: Computing machinery and intelligence. Mind: A quarterly review of psychology and philosophy 59 (1950) 433–460MathSciNetGoogle Scholar
  24. 24.
    Belleman, R., Sloot, P.: The design of dynamic exploration environments for computational steering simulations. In Bubak, M., Mosciriski, J., Noga, M., eds.: Proceedings of the SGI Users’ Conference, Kraków, Poland, Academic Computer Centre CYFRONET AGH (2000) 57–74Google Scholar
  25. 25.
    McGhee, Jr., G.R.: Theoretical Morphology: The concept and its applications. Colombia University Press (1999)Google Scholar
  26. 26.
    Basney, J., Livny, M.: Deploying a high throughput computing cluster. In Buyya, R., ed.: High Performance Cluster Computing. Volume 1. Prentice Hall PTR (1999)Google Scholar
  27. 27.
    Iskra, K.A., Hendrikse, Z.W., van Albada, G.D., Overeinder, B.J., Sloot, P.M.A.: The implementation of Dynamite — an environment for migrating PVM tasks. Operating Systems Review 34 (2000) 40–55CrossRefGoogle Scholar
  28. 28.
    Abramson, D., Giddy, J.: Scheduling large parametric modelling experiments on a distributed meta-computer. In: PCW’ 97, Australian National University, Canberra (1997) P2-H-1–P2-H-8Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2003

Authors and Affiliations

  • Roeland Merks
    • 1
  • Alfons Hoekstra
    • 1
  • Jaap Kaandorp
    • 1
  • Peter Sloot
    • 1
  1. 1.Section Computational ScienceUniversity of AmsterdamAmsterdamThe Netherlands

Personalised recommendations