Lattice Boltzmann Analysis of the Flow Reduction Mechanism in Stented Cerebral Aneurysms for the Endovascular Treatment

  • Miki Hirabayashi
  • Makoto Ohta
  • Daniel A. Rüfenacht
  • Bastien Chopard
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 2657)


Two-dimensional numerical analysis of local hemodynamics on flow-reduction mechanism by stent implantation in cerebral aneurysms is presented to understand these interesting hydrodynamic phenomena and improve this promising minimally invasive treatment. Recently in the cerebral aneurysm treatment, this new endovascular occlusion technique using a porous tubular shaped stent or coils sometimes replaces invasive open surgeries. It is thought that the flow reduction by the stent implantation prevents the aneurysm rupture, however its mechanism is not well understood. We reveal the fundamental flow reduction mechanism by the stent implantation in dependence of the aneurysm size using the lattice Boltzmann approach.


Stent Implantation Lattice Boltzmann Method Cerebral Aneurysm Parent Vessel Aneurysm Model 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Vorp, D. A., Steinman, D. A., Ethier, C. R.: Computational Modeling of Arterial Biomechanics. IEEE Comput. Sci. Eng. 3(5) (2001) 51–64Google Scholar
  2. 2.
    Berger, S. A., Jou, L-D.: Flows in Stenotic Vessels. Annu. Rev. Fluid Mech. 32 (2000) 347–382CrossRefMathSciNetGoogle Scholar
  3. 3.
    Wootten, D. M., Ku D. N.: Fluid Mechanics of Vascular Systems, Diseases, and Thrombosis. Annu. Rev. Biomed. Eng. 1 (1999) 299–329CrossRefGoogle Scholar
  4. 4.
    Ku, D. N.: Blood Flow in Arteries. Annu. Rev. Fluid. Mech. 29 (1997) 399–434CrossRefMathSciNetGoogle Scholar
  5. 5.
    Lieber, B. B., Stancampiano, A. P., Wakhloo, A. K.: Alteration of hemodynamics in aneurysm models by stenting: influence on stent porosity. Ann. Biomed. Eng. 25(3) (1997) 460–469CrossRefGoogle Scholar
  6. 6.
    Marks, M. P., Dake, M. D., Steinberg, G. K., Norbash, A. M., Lane, B.: Stent Placement for Arterial and Venous Cerebrovascular Disease: Preliminary Clinical Experience. Radiology 191 (1994) 441–446Google Scholar
  7. 7.
    Wakhloo, A. K., Schellhammer, F., Vries, J. de., Haberstroh, J., Schumacher, M.: Self-expanding and ballon-expandable stents in the treatment of carotid aneurysms: an experimental study in a canie model, AJNR Am. J. Neuroradiol., 15 (1994) 493–502Google Scholar
  8. 8.
    Aenis, M., Stancampiano, A. P., Wakhloo, A. K., Lieber, B. B.: Modeling of Flow in a Straight Stented and Nonstented side Wall Aneurysm Model. ASME Journal of Biomechanical Engineering 119 (1997) 206–212CrossRefGoogle Scholar
  9. 9.
    Liou, T. M., Chang, W. C., Liao, C. C.: LDV measurements in lateral model aneurysms of various sizes. Exp. in Fluids. 23 (1997) 317–324CrossRefGoogle Scholar
  10. 10.
    Yu, S. C. M., Zhao, J. B.: A steady flow analysis on the stented and non-stented sidewall aneurysm models. Med. Eng. Phys. 21 (1999) 133–141CrossRefGoogle Scholar
  11. 11.
    Baráth, K., Cassot, F., Ohta, M., Fasel J. H. D., Rüfenacht, D. A.: Influence of stent properties on the alteration of hemodynamics in elastic cerebral aneurysm models. to be submittedGoogle Scholar
  12. 12.
    Succi, S.: The Lattice Boltzmann Equation for Fluid Dynamics and Beyond (Oxford Science Publications, 2001)Google Scholar
  13. 13.
    Chen, S., Doolen, G. D.: Lattice Boltzmann method for fluid flows. Annu. Rev. Fluid Mech. 30 (1998) 329–364CrossRefMathSciNetGoogle Scholar
  14. 14.
    Nichois W. W., O’Rourke, M. F.: McDonald’s Blood Flows in Arteries, Lea and Febiger, Philadelphia-London (1974)Google Scholar
  15. 15.
    Perktold, K., Resch, M., Florian, H.: Pulsatile non-newtonian flow characteristics in a three-dimensional human carotid bifurcation model. ASME Journal of Biomechanical engineering 113 (1991) 464–475CrossRefGoogle Scholar
  16. 16.
    Higauera, F., Succi, S., Benzi, R.: Lattice gas dynamics with enhanced collisions. Europhys. Lett. 9 (1989) 345–49CrossRefGoogle Scholar
  17. 17.
    Qian, Y. H., d’Humiéres, D., Lallemand, P.: Lattice BGK models for Navier-Stokes equation. Europhys. Lett. 17 (1992) 479–484CrossRefzbMATHGoogle Scholar
  18. 18.
    Chen, H., Chen, S., Matthaeus, W.: Recovery of the Navier-Stokes equations using a lattice-gas Boltzmann method. Phys. Rev. A. 45 (1992) R5339–R5342CrossRefGoogle Scholar
  19. 19.
    Bhatnagar, P.L., Gross E.P., Krook M.: A model for collision processes in gases. I: small amplitude processes in charged and neutral one-component system. Phys. Rev. 94 (1995) 511–525CrossRefGoogle Scholar
  20. 20.
    Koelman, J.M.V.A.: A simple lattice Boltzmann scheme for Navier-Stokes fluid flow. Europhys. Lett. 15 (1991) 603–607CrossRefGoogle Scholar
  21. 21.
    He, X., Zou, Q., Luo, L. S., Dembo, M.: Analytic solutions of simple flow and analysis of non-slip boundary conditions for the lattice Boltzmann BGK model. J. of Stat. Phys. 87 (1997) 115–136zbMATHCrossRefMathSciNetGoogle Scholar
  22. 22.
    Dupuis, A.: From a lattice Boltzmann model to a parallel and reusable implementation of a virtual river, Doctoral thesis, University of Geneva (2002).
  23. 23.
    Ziegler, D. P.: Boundary conditions for lattice Boltzmann simulations. J. Sta. Phys. 71 (1993) 1171–1177zbMATHCrossRefGoogle Scholar
  24. 24.
    Skordos, P. A.: Initial and boundary conditions for the lattice Boltzmann method. Phys. Rev. E. 46 (1993) 4823–4842CrossRefMathSciNetGoogle Scholar
  25. 25.
    Löw, M., Perktold, K., Rauning, R.: Hemodynamics in Rigid and Distensible Saccular Aneurysms: A Numerical Study of Pulsatile Flow Characteristics. Biorheology 30 (1993) 287–298Google Scholar
  26. 26.
    Perktold, K., Kenner, T., Hilbert, D., Spork, B., Florian, H.: Numerical Blood Flow Analysis: Arterial Bifurcation With a Saccular Aneurysm. Basic Res. in Cardiol. 83 (1988) 24–31CrossRefGoogle Scholar
  27. 27.
    Perktold, K., Peter, R., Resch, M.: Pulsatile Non-Newtonian Blood Flow Simulation Through a Bifurcation With an Aneurysm. Biorheology 26 (1989) 1011–1030Google Scholar
  28. 28.
    Giraud, L., D’Humiéres, D., Lallemand, P.: A lattice Boltzmann model for Jeffreys viscoelastic fluid, Europhys. Lett., 46 (1998) 625–630CrossRefGoogle Scholar
  29. 29.
    Chopard, B., Marconi, S.: Lattice Boltzmann Solid Particles in a Lattice Boltzmann Fluid. J. Stat. Phys. 107 (2002) 23–37zbMATHCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2003

Authors and Affiliations

  • Miki Hirabayashi
    • 1
  • Makoto Ohta
    • 2
  • Daniel A. Rüfenacht
    • 2
  • Bastien Chopard
    • 1
  1. 1.Computer Science DepartmentUniversity of GenevaGeneva 4Switzerland
  2. 2.NeuroradiologyHospital University of Geneva (HUG)Geneva 14Switzerland

Personalised recommendations