The Complexity of Detecting Fixed-Density Clusters

  • Klaus Holzapfel
  • Sven Kosub
  • Moritz G. Maaß
  • Hanjo Täubig
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 2653)


We study the complexity of finding a subgraph of a certain size and a certain density, where density is measured by the average degree. Let γ : ℕ → ℚ+ be any density function, i.e., γ is computable in polynomial time and satisfies γ(k) ≤ k − 1 for all k ∈ ℕ. Then γ-Cluster is the problem of deciding, given an undirected graph G and a natural number k, whether there is a subgraph of G on k vertices which has average degree at least γ(k). For γ(k) = k − 1, this problem is the same as the well-known clique problem, and thus NP-complete. In contrast to this, the problem is known to be solvable in polynomial time for γ(k) = 2. We ask for the possible functions γ such that γ-Cluster remains NP-complete or becomes solvable in polynomial time. We show a rather sharp boundary: γ-Cluster is NP-complete if \( \gamma = 2 + \Omega \left( {\frac{1} {{k^1 - \mathcal{E}}}} \right) \) for some ε > 0 and has a polynomial-time algorithm for \( \gamma = 2 + 0\left( {\frac{1} {k}} \right) \) .


Density-based clustering computational complexity graph algorithms fixed-parameter problems 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Y. Asahiro, R. Hassin, and K. Iwama. Complexity of finding dense subgraphs. Discrete Applied Mathematics, 121(1–3): 15–26, 2002.zbMATHCrossRefMathSciNetGoogle Scholar
  2. 2.
    Y. Asahiro, K. Iwama, H. Tamaki, and T. Tokuyama. Greedily finding a dense subgraph. Journal of Algorithms, 34(2): 203–221, 2000.zbMATHCrossRefMathSciNetGoogle Scholar
  3. 3.
    C. J. Alpert and A. B. Kahng. Recent developments in netlist partitioning: A survey. Integration: The VLSI Journal, 19(1–2): 1–81, 1995.zbMATHCrossRefGoogle Scholar
  4. 4.
    S. Arora, D. Karger, and M. Karpinski. Polynomial time approximation schemes for dense instances of NP-hard problems. Journal of Computer and System Sciences, 58(1): 193–210, 1999.zbMATHCrossRefMathSciNetGoogle Scholar
  5. 5.
    R. B. Boppana and M. M. Halldórsson. Approximating maximum independent sets by excluding subgraphs. BIT, 32(2):180–196, 1992.zbMATHCrossRefMathSciNetGoogle Scholar
  6. 6.
    M. S. Charikar. Greedy approximation algorithms for finding dense components in a graph. In Proceedings 3rd International Workshop on Approximation Algorithms for Combinatorial Optimization, volume 1913 of Lecture Notes in Computer Science, pages 84–95. Springer-Verlag, Berlin, 2000.CrossRefGoogle Scholar
  7. 7.
    J. Cong and M. Smith. A parallel bottom-up clustering algorithm with applications to circuit partitioning in VLSI design. In Proceedings 30th ACM/IEEE Design Automation Conference, pages 755–760. ACM Press, New York, 1993.Google Scholar
  8. 8.
    A. Czygrinow. Maximum dispersion problem in dense graphs. Operations Research Letters, 27(5): 223–227, 2000.CrossRefMathSciNetGoogle Scholar
  9. 9.
    U. Faigle and W. Kern. Computational complexity of some maximum average weight problems with precedence constraints. Operations Research, 42(4):1268–1272, 1994.MathSciNetCrossRefGoogle Scholar
  10. 10.
    U. Feige, G. Kortsarz, and D. Peleg. The dense k-subgraph problem. Algorithmica, 29(3): 410–421, 2001.zbMATHCrossRefMathSciNetGoogle Scholar
  11. 11.
    U. Feige and M. Seltser. On the densest k-subgraph problem. Technical Report CS97-16, Department of Applied Mathematics and Computer Science, The Weizmann Institute of Science, Rehovot, Israel, 1997.Google Scholar
  12. 12.
    G. Gallo, M. D. Grigoriadis, and R. E. Tarjan. A fast parametric maximum flow algorithm and applications. SIAM Journal on Computing, 18(1):30–55, 1989.zbMATHCrossRefMathSciNetGoogle Scholar
  13. 13.
    O. Goldschmidt, D. Nehme, and G. Yu. On the set union knapsack problem. Naval Research Logistics, 41(6):833–842, 1994.zbMATHCrossRefGoogle Scholar
  14. 14.
    J. Håastad. Clique is hard to approximate within n 1−ε. Acta Mathematica, 182(1):105–142, 1999.CrossRefMathSciNetGoogle Scholar
  15. 15.
    K. Holzapfel, S. Kosub, M. G. Maaß, and H. Täubig. The complexity of detecting fixed-density clusters. Technical Report TUM-I0212, Fakultät für Informatik, Technische Universität München, 2002.Google Scholar
  16. 16.
    D. J.-H. Huang and A. B. Kahng. When cluster meet partitions: New density-based methods for circuit decomposition. In Proceedings European Design and Test Conference, pages 60–64. IEEE Computer Society Press, Los Alamitos, 1995.Google Scholar
  17. 17.
    J. M. Kleinberg, S. R. Kumar, P. Raghavan, S. Rajagopalan, and A. S. Tomkins. The Web as a graph: measurements, models, and methods. In Proceedings 5th International Conference on Computing and Combinatorics, volume 1627 of Lecture Notes in Computer Science, pages 1–17. Springer-Verlag, Berlin, 1999.CrossRefGoogle Scholar
  18. 18.
    S. R. Kumar, P. Raghavan, S. Rajagopalan, and A. S. Tomkins. Trawling the Web for emerging cyber-communities. Computer Networks, 31(3):1481–1493, 1999.CrossRefGoogle Scholar
  19. 19.
    T. Murata. Discovery of Web communities based on the co-occurrence of references. In Proceedings 3th International Conference on Discovery Science, volume 1967 of Lecture Notes in Artificial Intelligence, pages 65–75. Springer-Verlag, Berlin, 2000.Google Scholar
  20. 20.
    D. Nehme and G. Yu. The cardinality and precedence constrained maximum value sub-hypergraph problem and its applications. Discrete Applied Mathematics, 74(1):57–68, 1997.zbMATHCrossRefMathSciNetGoogle Scholar
  21. 21.
    A. Srivastav and K. Wolf. Finding dense subgraphs with semidefinite programming. In Proceedings International Workshop on Approximation Algorithms for Combinatorial Optimization, volume 1444 of Lecture Notes in Computer Science, pages 181–191. Springer-Verlag, Berlin, 1998.CrossRefGoogle Scholar
  22. 22.
    P. Turán. On an extremal problem in graph theory. Matematikai és Fizikai Lapok, 48: 436–452, 1941. In Hungarian.zbMATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2003

Authors and Affiliations

  • Klaus Holzapfel
    • 1
  • Sven Kosub
    • 1
  • Moritz G. Maaß
    • 1
  • Hanjo Täubig
    • 1
  1. 1.Fakultät für InformatikTechnische Universität MünchenGarching b. MünchenGermany

Personalised recommendations