On k-Edge-Connectivity Problems with Sharpened Triangle Inequality

Extended Abstract
  • Hans-Joachim Böckenhauer
  • Dirk Bongartz
  • Juraj Hromkovič
  • Ralf Klasing
  • Guido Proietti
  • Sebastian Seibert
  • Walter Unger
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 2653)


The edge-connectivity problem is to find a minimum-cost k-edge-connected spanning subgraph of an edge-weighted, undirected graph G for any given G and k. Here we consider its APX-hard subproblems with respect to the parameter β, with \( \frac{1} {2} \)β < 1, where G = (V, E) is a complete graph with a cost function c satisfying the sharpened triangle inequality
$$ c\left( {\left\{ {u,v} \right\}} \right) \leqslant \beta .\left( {c\left\{ {u,w} \right\}} \right) + c\left( {\left\{ {w,v} \right\}} \right) $$
for all u, v, wV.

First, we give a linear-time approximation algorithm for these optimization problems with approximation ratio \( \frac{\beta } {{1 - \beta }} \) for any \( \frac{1} {2} \)β < 1, which does not depend on k.

The result above is based on a rough combinatorial argumentation. We sophisticate our combinatorial consideration in order to design a \( \left( {1 + \frac{{5\left( {2\beta - 1} \right)}} {{9\left( {1 - \beta } \right)}}} \right) \) approximation algorithm for the 3-edge-connectivity subgraph problem for graphs satisfying the sharpened triangle inequality for \( \frac{1} {2} \)β\( \frac{2} {3} \) .


Approximation Algorithm Triangle Inequality Approximation Ratio Travel Salesman Problem Hamiltonian Cycle 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    T. Andreae: On the traveling salesman problem restricted to inputs satisfying a relaxed triangle inequality. Networks 38(2) (2001), pp. 59–67.zbMATHCrossRefMathSciNetGoogle Scholar
  2. 2.
    T. Andreae, H.-J. Bandelt: Performance guarantees for approximation algorithms depending on parameterized triangle inequalities. SIAM Journal on Discrete Mathematics 8 (1995), pp. 1–16.zbMATHCrossRefMathSciNetGoogle Scholar
  3. 3.
    M.A. Bender, C. Chekuri: Performance guarantees for the TSP with a parameterized triangle inequality. Information Processing Letters 73 (2000), pp. 17–21.CrossRefMathSciNetGoogle Scholar
  4. 4.
    H.-J. Böckenhauer, D. Bongartz, J. Hromkovič, R. Klasing, G. Proietti, S. Seibert, W. Unger: On the hardness of constructing minimal 2-connected spanning subgraphs in complete graphs with sharpened triangle inequality. Proc. FSTTCS 2002, LNCS 2556, Springer 2002, pp. 59–70.Google Scholar
  5. 5.
    H.-J. Böckenhauer, J. Hromkovič, R. Klasing, S. Seibert, W. Unger: Approximation algorithms for the TSP with sharpened triangle inequality. Information Processing Letters 75, 2000, pp. 133–138.CrossRefMathSciNetGoogle Scholar
  6. 6.
    H.-J. Böckenhauer, J. Hromkovič, R. Klasing, S. Seibert, W. Unger: Towards the Notion of Stability of Approximation for Hard Optimization Tasks and the Traveling Salesman Problem (Extended Abstract). Proc. CIAC 2000, LNCS 1767, Springer 2000, pp. 72–86. Full version in Theoretical Computer Science 285(1) (2002), pp. 3–24.Google Scholar
  7. 7.
    H.-J. Böckenhauer, J. Hromkovič, R. Klasing, S. Seibert, W. Unger: An Improved Lower Bound on the Approximability of Metric TSP and Approximation Algorithms for the TSP with Sharpened Triangle Inequality (Extended Abstract). Proc. STACS 2000, LNCS 1770, Springer 2000, pp. 382–394.Google Scholar
  8. 8.
    H.-J. Böckenhauer, S. Seibert: Improved lower bounds on the approximability of the traveling salesman problem. RAIRO-Theoretical Informatics and Applications 34, 2000, pp. 213–255.zbMATHCrossRefGoogle Scholar
  9. 9.
    A. Czumaj, A. Lingas: On approximability of the minimum-cost k-connected spanning subgraph problem. SODA’99, 1999, pp. 281–290.Google Scholar
  10. 10.
    J. Cheriyan, R. Thurimella: Approximating minimum-size k-connected spanning subgraphs via matching. SIAM Journal on Computing 30(2): 528–560 (2000), pp. 528–560.zbMATHCrossRefMathSciNetGoogle Scholar
  11. 11.
    R. Diestel: Graph Theory. Second Edition, Springer 2000.Google Scholar
  12. 12.
    R.G. Downey, M.R. Fellows: Fixed-parameter tractability and completeness. Congressus Numerantium 87 (1992), pp. 161–187.MathSciNetGoogle Scholar
  13. 13.
    R.G. Downey, M.R. Fellows: Parameterized Complexity. Springer 1999.Google Scholar
  14. 14.
    C.G. Fernandes: A better approximation ratio for the minimum size k-edge-connected spanning subgraph problem. J. Algorithms, 28(1) (1998), pp. 105–124.zbMATHCrossRefMathSciNetGoogle Scholar
  15. 15.
    M.R. Garey, D.S. Johnson: Computers and Intractability: A guide to the theory of NP-completeness. W. H. Freeman and Company, San Francisco, 1979.zbMATHGoogle Scholar
  16. 16.
    J. Hromkovič: Stabilityof approximation algorithms and the knapsack problem. In: J. Karhumaki, H. Maurer, G. Paun, G. Rozenberg (Eds.) Jewels are Forever, Springer 1999, pp. 238–249.Google Scholar
  17. 17.
    J. Hromkovič: Algorithmics for Hard Problems — Introduction to Combinatorial Optimization, Randomization, Approximation, and Heuristics. Springer 2001.Google Scholar
  18. 18.
    S. Khuller, B. Raghavachari: Improved approximation algorithms for uniform connectivity problems. J. Algorithms 21(2): (1996), pp. 434–450.zbMATHCrossRefMathSciNetGoogle Scholar
  19. 19.
    S. Khuller, U. Vishkin: Biconnectivity approximations and graph carvings. Journal of the ACM 41 (1994), pp. 214–235.zbMATHCrossRefMathSciNetGoogle Scholar
  20. 20.
    M. Penn, H. Shasha-Krupnik: Improved approximation algorithms for weighted 2-and 3-vertex connectivity augmentation. Journal of Algorithms 22 (1997), pp. 187–196.zbMATHCrossRefMathSciNetGoogle Scholar
  21. 21.
    D. Weckauf: Experimental Analysis of Approximation Algorithms for the Traveling Sales-person Problem with Relaxed Triangle Inequality. Diploma thesis, RWTH Aachen 2002 (in German).Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2003

Authors and Affiliations

  • Hans-Joachim Böckenhauer
    • 1
  • Dirk Bongartz
    • 1
  • Juraj Hromkovič
    • 1
  • Ralf Klasing
    • 2
  • Guido Proietti
    • 3
    • 4
  • Sebastian Seibert
    • 1
  • Walter Unger
    • 1
  1. 1.Lehrstuhl für Informatik IRWTH AachenAachenGermany
  2. 2.Project MASCOTTECNRS/INRIASophia-AntipolisFrance
  3. 3.Dipartimento di InformaticaUniversità di L’AquilaL’AquilaItaly
  4. 4.Istituto di Analisi dei Sistemi ed Informatica “Antonio Ruberti”CNRRomaItaly

Personalised recommendations