An Explicit Solution for Computing the Euclidean d-dimensional Voronoi Diagram of Spheres in a Floating-Point Arithmetic

  • M. L. Gavrilova
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 2669)

Abstract

The problem of computing a d-dimensional Euclidean Voronoi diagram of spheres is relevant to many areas, including computer simulation, motion planning, CAD, and computer graphics. This paper presents a new algorithm based on the explicit computation of the coordinates and radii of Euclidean Voronoi diagram vertices for a set of spheres. The algorithm is further applied to compute the Voronoi diagram with a specified precision in a fixed length floating-point arithmetic. The algorithm is implemented using the ECLibrary (Exact Computation Library) and tested on the example of a 3-dimensional Voronoi diagram of a set of spheres.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Blum, L., Cucker, F., Shub, M. and Smale, S. “Complexity and Real Computation” (1997)Google Scholar
  2. 2.
    Dey, T.K., Sugihara K. and Bajaj, C. L. DT in three dimensions with finite precision arithmetic, Comp. Aid. Geom. Des 9 (1992) 457–470MATHCrossRefMathSciNetGoogle Scholar
  3. 3.
    Edelsbrunner, H. and Mcke, E. Simulation of simplicity: a technique to cope with degenerate cases in geometric algorithms, 4th Annual ACM Symposium on Computational Geometry (1988) 118–133.Google Scholar
  4. 4.
    Fortune, S. and Wyk, C. Efficient exact arithmetic for computational geometry, 4th Annual ACM Symp. Comput. Geometry, (1993) 163–172Google Scholar
  5. 5.
    Gavrilova, M. and Rokne, J. Reliable line segment intersection testing, Computer Aided Design, (2000) 32, 737–745.CrossRefGoogle Scholar
  6. 6.
    Gavrilova, M., Ratschek, H. and Rokne, J. Exact computation of Voronoi diagram and Delaunay triangulation, Reliable Computing, (2000) 6(1) 39–60.CrossRefMathSciNetGoogle Scholar
  7. 7.
    S. Krishnan, M. Foskey, T. Culver, J. Keyser, D. Manocha, PRECISE: Efficient Multiprecision Evaluation of Algebraic Roots and Predicates for Reliable Geometric Computations, Symp. on Computat. Geometry (2002)Google Scholar
  8. 8.
    Naher, S. The LEDA user manual, Version 3.1 (Jan. 16, 1995). Available from http://ftp.mpi-sb.mpg.de in directory /pub/LEDA.
  9. 9.
    Ratschek, H. and Rokne, J. Exact computation of the sign of a finite sum, Applied Mathematics and Computation, (1999) 99, 99–127.MATHCrossRefMathSciNetGoogle Scholar
  10. 10.
    Rokne, J.: Interval arithmetic. In: Graphics Gems III, Academic Press, pp. 61–66 and pp. 454–457 (1992).Google Scholar
  11. 11.
    Sugihara, K. and Iri, M. A robust topology-oriented incremental algorithm for Voronoi diagrams, IJCGA, (1994) 4 (2): 179–228.MATHCrossRefMathSciNetGoogle Scholar
  12. 12.
    Yap, C., Dub, T. The exact computation paradigm, In “Computing in Euclidean Geometry” (2nd Edition). Eds. D.-Z. Du and F.K. Hwang, World Scientific Press (1995)Google Scholar
  13. 13.
    Gavrilova, M. (2002) Algorithm library development for complex biological and mechanical systems: functionality, interoperability and numerical stability DIMACS Workshop on Implementation of Geometric Algorithms, December 2002 (abstract)Google Scholar
  14. 14.
    Gavrilova, M. (2002) A Reliable Algorithm for Computing the Generalized Voronoi Diagram for a Set of Spheres in the Euclidean d-dimensional Space, in the Proceedings of the 14th Canadian Conference on Computational Geometry, August, Lethbridge, CanadaGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2003

Authors and Affiliations

  • M. L. Gavrilova
    • 1
  1. 1.Dept of Comp. ScienceUniversity of CalgaryCalgaryCanada

Personalised recommendations