Advertisement

AIF - A Data Structure for Polygonal Meshes

  • Frutuoso G. M. Silva
  • Abel J. P. Gomes
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 2669)

Abstract

Meshing is an important topic in geometric modelling and computer graphics. This paper introduces a concise and fast data structure, called AIF (Adjacency and Incidence Framework). Its conciseness results from the fact that it is an orientable, but not an oriented, data structure, i.e. an orientation can be topologically induced as necessary in many applications. It is an optimal C 9 4 data structure for polygonal meshes, manifold and non-manifold, which means that a minimal number of direct and indirect accesses are required to retrieve adjacency and incidence information from it. In fact, it operates close to real-time even for huge meshes, what becomes it appropriate for real-time applications (e.g. multiresolution meshing refinement and simplification operations).

Keywords

Triangular Mesh Polygonal Mesh Incidence Relation Adjacency Relation Oriented Cell 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Baumgart, B. G.: Winged-edge polyhedron representation. Technical report, STAN-CS-320, Stanford University, 1972.Google Scholar
  2. 2.
    Brisson, E.: Representing geometric structures in d dimension: topology and order. Descrete & Computational Geometry, Vol. 9,No. 4, 1993, pp.387–426.zbMATHCrossRefMathSciNetGoogle Scholar
  3. 3.
    Campagna, S., Kobblet, L., and Seidel, Hans-Peter: Directed Edges-A Scalable Representation for Triangular Meshes. JGT, Vol. 3.no.4, 1998, pp.1–12.Google Scholar
  4. 4.
    Carey, R., Bell, G., and Marrin, C.: The Virtual Reality Modeling Language ISO/IEC 14772-1, 1997. http://www.vrml.org/technicalinfo/specifications/
  5. 5.
    Garland, M.: Multiresolution modeling: Survey & future opportunities. In Eurographics-State of the Art Reports, 1999, pp.111–131.Google Scholar
  6. 6.
    Heckbert, P. S., and Garland, M.: Survey of Polygonal Surface Simplification Algorithms. Siggraph Course Notes 25, 1997.Google Scholar
  7. 7.
    Hoppe, H.: Progressive Meshes. Proceedings of Siggraph, 1996, pp.99–108.Google Scholar
  8. 8.
    Hoppe, H.: Efficient Implementation of Progressive Meshes. Computer & Graphics, Vol.22,No. 1, 1998, pp.27–36.CrossRefGoogle Scholar
  9. 9.
    Kallmann, M. and Thalmann, D.: Star-Vertices: A Compact Representation for Planar Meshes with Adjacency Information. JGT, Vol.6,No. 1, 2001.Google Scholar
  10. 10.
    Lee, A., Dobkin, D., Sweldens, W. and Schrder, P.: Multiresolution Mesh Morphing. Proceedings of Siggraph, 1999, pp. 343–350.Google Scholar
  11. 11.
    Loop, C.: Managing Adjacency in Triangular Meshes. Tech. Report No. MSR-TR-2000-24, Microsoft Research, 2000.Google Scholar
  12. 12.
    Mäntylä, M.: An Introduction to Solid Modeling, Computer Science Press, 1988.Google Scholar
  13. 13.
    Ni, X., and Bloor, M. S.: Performance Evaluation of Boundary Data Structures. IEEE CG&A, Vol. 14,No. 6, 1994, pp.66–77.Google Scholar
  14. 14.
    Pajarola, R.: FastMesh: Efficient View-dependent Meshing. Proceedings of Pacific Graphics, 2001, pp.22–30.Google Scholar
  15. 15.
    Popovic, J., Hoppe, H.: Progressive Simplicial Complexes. Computer Graphics, Vol.31, 1997, pp.217–224.Google Scholar
  16. 16.
    Taubin, G., and Rossignac, J.: Geometric compression through topological surgery. ACM Transactions on Graphics, Vol.17,No. 2, 1998, pp.84–115.CrossRefGoogle Scholar
  17. 17.
    Wavefront Technologies, Inc. Wavefront File Formats, Version 4.0 RG-10-004, first ed. Santa Barbara. CA. 1993.Google Scholar
  18. 18.
    Weiler, K.: The radial edge structure: a topological representation for non-manifold geometric boundary modelling. In Geometric modelling for CAD applications. Elsevier Science Publish. 1998.Google Scholar
  19. 19.
    Weiler, K.: Edge-Based data structure for solid geometric in Curved-Surface Environments. IEEE CG&A, Vol.5,No. 1, 1985, pp.21–40.Google Scholar
  20. 20.
    Zorin, D., Schrder, P., and Sweldens, W.: Interactive Multiresolution Mesh Editing. Proceedings of Siggraph, 1997, pp.259–268.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2003

Authors and Affiliations

  • Frutuoso G. M. Silva
    • 1
  • Abel J. P. Gomes
    • 1
  1. 1.IT - Networks and Multimedia Group Department of InformaticsUBIPortugal

Personalised recommendations