Computing the Incomplete Gamma Function to Arbitrary Precision

  • Serge Winitzki
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 2667)


I consider an arbitrary-precision computation of the incomplete Gamma function from the Legendre continued fraction. Using the method of generating functions, I compute the convergence rate of the continued fraction and find a direct estimate of the necessary number of terms. This allows to compare the performance of the continued fraction and of the power series methods. As an application, I show that the incomplete Gamma function Γ (a, z) can be computed to P digits in at most O(P) long multiplications uniformly in z for Re z > 0. The error function of the real argument, erf x, requires at most O(P 2/3) long multiplications.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    M. Abramowitz and I. Stegun, eds., Handbook of special functions, National Bureau of Standards, 1964.Google Scholar
  2. 2.
    W. Gautschi, ACM TOMS 5, p. 466 (1979); ibid., “Algorithm 542”, p. 482.zbMATHCrossRefGoogle Scholar
  3. 3.
    A. R. DiDonato and A. H. Morris, Jr., ACM TOMS 12, p. 377 (1986).zbMATHCrossRefGoogle Scholar
  4. 4.
    W. Gautschi, ACM TOMS 25, p. 101 (1999).zbMATHCrossRefMathSciNetGoogle Scholar
  5. 5.
    D. M. Smith, “Algorithm 814”, ACM TOMS 27, p. 377 (2001).zbMATHCrossRefGoogle Scholar
  6. 6.
    N. M. Temme, SIAM J. Math. Anal. 10, pp. 757 (1979).zbMATHCrossRefMathSciNetGoogle Scholar
  7. 7.
    H. C. Thacher, Jr., “Algorithm 180”, Comm. ACM 6, p. 314 (1963).CrossRefGoogle Scholar
  8. 8.
    D. M. Smith, Math. Comp. 52, p. 131 (1989).zbMATHCrossRefMathSciNetGoogle Scholar
  9. 9.
    B. Haible and T. Papanikolaou, LNCS 1423, p. 338 (Springer, 1998).MathSciNetGoogle Scholar
  10. 10.
    W. H. Press, S. A. Teukolsky, W. T. Vetterling, B. P. Flannery, Numerical recipes in C, 2nd ed., Cambridge University Press, 1992.Google Scholar
  11. 11.
    W. B. Jones and W. J. Thron, Math. Comp. 28, p. 795 (1974).zbMATHCrossRefMathSciNetGoogle Scholar
  12. 12.
    A. H. Karp and P. Markstein, ACM TOMS 23, p. 561 (1997).zbMATHCrossRefMathSciNetGoogle Scholar
  13. 13.
    Sh. E. Tsimring, Handbook of special functions and definite integrals: algorithms and programs for calculators, Radio and communications (publisher), Moscow, 1988 (in Russian).Google Scholar
  14. 14.
    J. H. McCabe, Math. Comp. 28, p. 811 (1974).zbMATHCrossRefMathSciNetGoogle Scholar
  15. 15.
    D. A. Field, Math. Comp. 31, p. 495 (1977).zbMATHCrossRefMathSciNetGoogle Scholar
  16. 16.
    F. W. J. Olver, Asymptotics and special functions, Academic Press, 1974.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2003

Authors and Affiliations

  • Serge Winitzki
    • 1
  1. 1.Department of PhysicsLudwig-Maximilians UniversityMunichGermany

Personalised recommendations