Advertisement

Adaptive and Scalable Allocation of Data-Objects in the Web

  • Pérez O. Joaquín 
  • Rodolfo A. Pazos R.
  • David Romero
  • Santaolaya S. René 
  • Rodriguez O. Guillermo 
  • Sosa S. Victor 
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 2667)

Abstract

In this paper we address the problem of designing allocation schemas of large database-objects in a Web environment that may be exposed to significant changes in usage and access patterns and scaling of data. In these circumstances, if the design is not adjusted to the new changes, the system can undergo a severe degradation in data access costs and response time. In order to solve this problem, we propose a formal model to generate a new database-object allocation. The model uses current state information of the system and usage statistical data collected during a given period, and adapts the system to the new usage patterns so as to minimize communication costs. Implicitly the mathematical model handles database-object migration and scaling of the number of sites. Model tests have been conducted with satisfactory and promising results. The principles used in the model can be applied to other models for the optimization of Web resources.

Keywords

Allocation Schema Access Pattern Access Frequency Data Allocation Query Frequency 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Ozsu, M., Valduries, P.: Principles of Distributed Database Systems. Prentice-Hall (1999).Google Scholar
  2. 2.
    Navathe, S., Karlapalem, K., Ra, M.: A Mixed Fragmentation Methodology for Initial Distributed Database Design. In Journal of Computer and Software Engineering, Vol. 3, No. 4 (1995).Google Scholar
  3. 3.
    Florescu, D., Levy, A., Mendelzon, A.: Database Techniques for the World-Wide Web: A Survey. SIGMOD Record, Vol. 27, No. 3. (1998) 59–74.CrossRefGoogle Scholar
  4. 4.
    Kazerouni, L., Karlapalem, K.: Stepwise Redesign of Distributed Relational Databases. Technical Report HKUST97-12. Department of Computer Science, HKUST (1997).Google Scholar
  5. 5.
    Wolfson, O., Jajodia, S., Huang, Y.: An Adaptive Data Replication Algorithm. ACM Transactions on Database Systems, Vol. 22, No. 4. (1997) 255–314.CrossRefGoogle Scholar
  6. 6.
    Tamhankar, A.M., Sudha R.: Database Fragmentation and Allocation: An Integrated Methodology and Case Study (1998).Google Scholar
  7. 7.
    Pérez, J.: Integración de la Fragmentación Vertical y Ubicación en el Diseño Adaptivo de Bases de Datos Distribuidas. Ph.D. thesis, ITESM Campus Cuernavaca, Mexico (1999).Google Scholar
  8. 8.
    Lin, X., Oslowska, M., Zhang, Y.: On Data Allocation with the Minimum Overall Communication Costs in Distributed Database Design. In Proceedings of ICCI-93. IEEE Press (1993) 539–544.Google Scholar
  9. 9.
    Pérez, J., Pazos, R.A., Romero, D., Cruz, L.: Análisis de Complejidad del Problema de la Fragmentación Vertical y Reubicación Dinámica en Bases de Datos Distribuidas. In Memorias del 7mo. Congreso Internacional de Investigación en Ciencias Computacionales. Inst. Tecnológico de Cd. Madero, Tampico, Mexico (2000) 63–70.Google Scholar
  10. 10.
    Kirkpatrick, S., Gellat, C. D., Vecchi, M.P.: Optimization by Simulated Annealing. SCIENCE, Vol. 220, No. 4598 (1983) 671–680.CrossRefMathSciNetGoogle Scholar
  11. 11.
    Pérez, J., Romero, D., Frausto, J., Pazos, R.A., Rodríguez, G., Reyes, F.: Dynamic Allocation of Vertical Fragments in Distributed Databases Using the Threshold Accepting Algorithm. In Proceeding of the 10th IASTED International Conference on Parallel and Distributed Computing and Systems, Las Vegas, U.S.A. (1998) 210–213.Google Scholar
  12. 12.
    Pérez, J., Pazos, R.A., Frausto, J., Romero, D., Cruz, L.: Vertical Fragmentation and Allocation in Distributed Databases with Site Capacity Restrictions Using the Threshold Accepting Algorithm. In Lectures Notes in Computer Science, Vol. 1793, Springer-Verlag (2000) 75–81.CrossRefGoogle Scholar
  13. 13.
    Wolsey, L.A.: Integer Programming. Wiley-Interscience; (1998).Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2003

Authors and Affiliations

  • Pérez O. Joaquín 
    • 1
  • Rodolfo A. Pazos R.
    • 1
  • David Romero
    • 2
  • Santaolaya S. René 
    • 1
  • Rodriguez O. Guillermo 
    • 3
  • Sosa S. Victor 
    • 1
  1. 1.Centro Nacional de Investigación y Desarrollo Tecnológico (CENIDET)Mexico
  2. 2.Instituto de Matemáticas, UNAMMexico
  3. 3.Instituto de Investigaciones Eléctricas, IIEMexico

Personalised recommendations