Checking Consistency of SDL+MSC Specifications

  • Deepak D’Souza
  • Madhavan Mukund
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 2648)


We consider the problem of checking whether a distributed system described in SDL is consistent with a set of MSCs that constrain the interaction between the processes. In general, the MSC constraints may be both positive and negative. The system should execute all the positive scenarios “sensibly”. On the other hand, the negative MSCs rule out some interactions as illegal. We would then like to verify that all the remaining legal interactions satisfy a desired global property, specified in linear-time temporal logic. We outline an approach to solve this problem using Spin, building in a modular way on existing tools.


Check Consistency Communication Pattern Linear Temporal Logic Message Type Monitor Process 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    R. Alur, G. Holzmann and D. Peled: An analyzer for message sequence charts. Software Concepts and Tools, 17(2) (1996) 70–77.zbMATHGoogle Scholar
  2. [2]
    R. Alur and M. Yannakakis: Model checking of message sequence charts. Proc. CONCUR’99, LNCS 1664, Springer-Verlag (1999) 114–129.Google Scholar
  3. [3]
    D. Bosnacki, D. Dams, L. Holenderski and N. Sidorova: Model checking SDL with Spin, Proc TACAS 2000, LNCS 1785, Springer-Verlag (2002) 363–377.Google Scholar
  4. [4]
    M. Bozga, J-C. Fernandez, L. Ghirvu, S. Graf, J. P. Karimm, L. Mounier and J. Sifakis: If: An intermediate representation for SDL and its applications, Proc. SDL-FORUM’ 99, Montreal, Canada, 1999.Google Scholar
  5. [5]
    P. Gastin and D. Oddoux: Fast LTL to Büchi automata translation, Proc. CAV 2001, LNCS 2102, Springer-Verlag (2001) 53–65.Google Scholar
  6. [6]
    R. Gerth, D. Peled, M. Y. Vardi and P. Wolper: Simple on-the-fly automatic verification of linear temporal logic, Proc PSTV 95, Warsaw, Poland, Chapman & Hall (1995) 3–18.Google Scholar
  7. [7]
    J. G. Henriksen, M. Mukund, K. Narayan Kumar and P. S. Thiagarajan: On Message Sequence Graphs and Finitely Generated Regular MSC Languages, Proc. ICALP 2000, LNCS 1853, Springer-Verlag (2000) 675–686.Google Scholar
  8. [8]
    J. G. Henriksen, M. Mukund, K. Narayan Kumar and P. S. Thiagarajan: Regular Collections of Message Sequence Charts’, Proc. MFCS 2000, LNCS 1893, Springer-Verlag (2000) 405–414.Google Scholar
  9. [9]
    G. J. Holzmann: The model checker SPIN, IEEE Trans. on Software Engineering, 23, 5 (1997) 279–295.CrossRefMathSciNetGoogle Scholar
  10. [10]
    ITU-T Recommendation Z.120: Message Sequence Chart (MSC). ITU, Geneva (1999).Google Scholar
  11. [11]
    ITU-T Recommendation Z.100: Specification and Description Language (SDL). ITU, Geneva (1999).Google Scholar
  12. [12]
    Z. Manna and A. Pnueli: The Temporal Logic of Reactive and Concurrent Systems, Springer-Verlag, Berlin (1991).zbMATHGoogle Scholar
  13. [13]
    A. Muscholl, D. Peled, and Z. Su: Deciding properties for message sequence charts. Proc. FOSSACS’98, LNCS 1378, Springer-Verlag (1998) 226–242.Google Scholar
  14. [14]
    A. Olson et al: System Engineering using SDL-92, Elsevier, North-Holland (1997).Google Scholar
  15. [15]
    A. Pnueli: The Temporal Logic of Programs, Proc. 18th IEEE FOCS (1977) 46–57.Google Scholar
  16. [16]
    E. Rudolph, P. Graubmann and J. Grabowski: Tutorial on message sequence charts, Computer Networks and ISDN Systems—SDL and MSC, Volume 28 (1996).Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2003

Authors and Affiliations

  • Deepak D’Souza
    • 1
  • Madhavan Mukund
    • 1
  1. 1.Chennai Mathematical InstituteChennaiIndia

Personalised recommendations