Dynamical Systems Generated by Rational Functions

  • Harald Niederreiter
  • Igor E. Shparlinski
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 2643)

Abstract

We consider dynamical systems generated by iterations of rational functions over finite fields and residue class rings. We present a survey of recent developments and outline several open problem.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    L. Arnold, Random Dynamical Systems, Springer-Verlag, Berlin, 1998.MATHGoogle Scholar
  2. 2.
    G. Barat, T. Downarowicz and P. Liardet, Dynamiques associées à une échelle de numération, Acta Arith. 103, 41–78 (2002).MATHMathSciNetGoogle Scholar
  3. 3.
    V. Berthé and H. Nakada, On continued fraction expansions in positive characteristic: equivalence relations and some metric properties, Expositiones Math. 18, 257–284 (2000).MATHGoogle Scholar
  4. 4.
    L. Blum, M. Blum and M. Shub, A simple unpredictable pseudo-random number generator, SIAM J. Computing 15, 364–383 (1986).MATHCrossRefMathSciNetGoogle Scholar
  5. 5.
    T. Cochrane, Exponential sums modulo prime powers, Acta Arith. 101, 131–149 (2002).MATHMathSciNetGoogle Scholar
  6. 6.
    T. Cochrane, C. Li and Z.Y. Zheng, Upper bounds on character sums with rational function entries, Acta Math. Sinica (English Ser.) 19, 1–11 (2003).CrossRefGoogle Scholar
  7. 7.
    T. Cochrane and Z.Y. Zheng, Pure and mixed exponential sums, Acta Arith. 91, 249–278 (1999).MATHMathSciNetGoogle Scholar
  8. 8.
    T. Cochrane and Z.Y. Zheng, Exponential sums with rational function entries, Acta Arith. 95, 67–95 (2000).MATHMathSciNetGoogle Scholar
  9. 9.
    T. Cochrane and Z.Y. Zheng, On upper bounds of Chalk and Hua for exponential sums, Proc. Amer. Math. Soc. 129, 2505–2516 (2001).MATHCrossRefMathSciNetGoogle Scholar
  10. 10.
    T. Cochrane and Z.Y. Zheng, A survey on pure and mixed exponential sums modulo prime powers, Number Theory for the Millennium (M.A. Bennett et al., eds.), vol. 1, pp. 271–300, A.K. Peters, Natick, MA, 2002.Google Scholar
  11. 11.
    S.D. Cohen, H. Niederreiter, I.E. Shparlinski and M. Zieve, Incomplete character sums and a special class of permutations, J. Théorie des Nombres Bordeaux 13, 53–63 (2001).MATHMathSciNetGoogle Scholar
  12. 12.
    R. Crandall and C. Pomerance, Prime Numbers: A Computational Perspective, Springer-Verlag, New York, 2001.Google Scholar
  13. 13.
    J. Eichenauer-Herrmann, E. Herrmann and S. Wegenkittl, A survey of quadratic and inversive congruential pseudorandom numbers, Monte Carlo and Quasi-Monte Carlo Methods 1996 (H. Niederreiter et al., eds.), Lect. Notes in Stat., vol. 127, pp. 66–97, Springer-Verlag, New York, 1998.Google Scholar
  14. 14.
    G. Everest and T. Ward, Heights of Polynomials and Entropy in Algebraic Dynamics, Springer-Verlag, London, 1999.MATHGoogle Scholar
  15. 15.
    M. Flahive and H. Niederreiter, On inversive congruential generators for pseudorandom numbers, Finite Fields, Coding Theory, and Advances in Communications and Computing (G.L. Mullen and P.J.-S. Shiue, eds.), pp. 75–80, Marcel Dekker, New York, 1993.Google Scholar
  16. 16.
    P. Flajolet and A.M. Odlyzko, Random mapping statistics, Advances in Cryptology — EUROCRYPT’ 89 (J.-J. Quisquater and J. Vandewalle, eds.), Lect. Notes in Comp. Sci., vol. 434, pp. 329–354, Springer-Verlag, Berlin, 1990.Google Scholar
  17. 17.
    L. Flatto, Z-numbers and β-transformations, Symbolic Dynamics and Its Applications, Contemporary Math., vol. 135, pp. 181–201, Amer. Math. Soc., Providence, RI, 1992.Google Scholar
  18. 18.
    L. Flatto, J.C. Lagarias and B. Poonen, The zeta function of the beta transformation, Ergodic Theory Dynam. Systems 14, 237–266 (1994).MATHMathSciNetCrossRefGoogle Scholar
  19. 19.
    J.B. Friedlander, J. Hansen and I.E. Shparlinski, Character sums with exponential functions, Mathematika 47, 75–85 (2000).MATHMathSciNetCrossRefGoogle Scholar
  20. 20.
    J.B. Friedlander, J. Hansen, and I.E. Shparlinski, On the distribution of the power generator modulo a prime power, Proc. DIMACS Workshop on Unusual Applications of Number Theory 2000, Amer. Math. Soc., Providence, RI (to appear).Google Scholar
  21. 21.
    J.B. Friedlander, S.V. Konyagin and I.E. Shparlinski, Some doubly exponential sums over ℤm, Acta Arith. 105, 349–370 (2002).MATHMathSciNetGoogle Scholar
  22. 22.
    J.B. Friedlander, D. Lieman and I.E. Shparlinski, On the distribution of the RSA generator, Sequences and Their Applications (C. Ding, T. Helleseth and H. Niederreiter, eds.), pp. 205–212, Springer-Verlag, London, 1999.Google Scholar
  23. 23.
    J.B. Friedlander, C. Pomerance and I.E. Shparlinski, Period of the power generator and small values of Carmichael’s function, Math. Comp. 70, 1591–1605 (2001).CrossRefMathSciNetGoogle Scholar
  24. 24.
    J.B. Friedlander and I.E. Shparlinski, On the distribution of the power generator, Math. Comp. 70, 1575–1589 (2001).MATHCrossRefMathSciNetGoogle Scholar
  25. 25.
    S. Gao, Elements of provable high orders in finite fields, Proc. Amer. Math. Soc. 127, 1615–1623 (1999).MATHCrossRefMathSciNetGoogle Scholar
  26. 26.
    F. Griffin, H. Niederreiter and I.E. Shparlinski, On the distribution of nonlinear recursive congruential pseudorandom numbers of higher orders, Applied Algebra, Algebraic Algorithms and Error-Correcting Codes (M. Fossorier et al., eds.), Lect. Notes in Comp. Sci., vol. 1719, pp. 87–93, Springer-Verlag, Berlin, 1999.CrossRefGoogle Scholar
  27. 27.
    J. Gutierrez and D. Gomez-Perez, Iterations of multivariate polynomials and discrepancy of pseudorandom numbers, Applied Algebra, Algebraic Algorithms and Error-Correcting Codes (S. Boztaş and I.E. Shparlinski, eds.), Lect. Notes in Comp. Sci., vol. 2227, pp. 192–199, Springer-Verlag, Berlin, 2001.CrossRefGoogle Scholar
  28. 28.
    J. Gutierrez, H. Niederreiter and I.E. Shparlinski, On the multidimensional distribution of inversive congruential pseudorandom numbers in parts of the period, Monatsh. Math. 129, 31–36 (2000).MATHCrossRefMathSciNetGoogle Scholar
  29. 29.
    K. Huber, On the period length of generalized inversive pseudorandom number generators, Applicable Algebra Engrg. Comm. Comput. 5, 255–260 (1994).MATHCrossRefMathSciNetGoogle Scholar
  30. 30.
    A. Katok and B. Hasselblatt, Introduction to the Modern Theory of Dynamical Systems, Cambridge University Press, Cambridge, 1995.MATHGoogle Scholar
  31. 31.
    A. Klapper, The distribution of points in orbits of PGL2(GF(q)) acting on GF(q n), Finite Fields, Coding Theory, and Advances in Communications and Computing (G.L. Mullen and P.J.-S. Shiue, eds.), pp. 430–431, Marcel Dekker, New York, 1993.Google Scholar
  32. 32.
    D.E. Knuth, The Art of Computer Programming, vol. 2, 3rd ed., Addison-Wesley, Reading, MA, 1998.Google Scholar
  33. 33.
    J.C. Lagarias, Pseudorandom number generators in cryptography and number theory, Cryptology and Computational Number Theory (C. Pomerance, ed.), Proc. Symp. in Appl. Math., vol. 42, pp. 115–143, Amer. Math. Soc., Providence, RI, 1990.Google Scholar
  34. 34.
    J.C. Lagarias, Number theory and dynamical systems, The Unreasonable Effectiveness of Number Theory, Proc. Symp. in Appl. Math., vol. 46, pp. 35–72, Amer. Math. Soc., Providence, RI, 1992.Google Scholar
  35. 35.
    J.C. Lagarias, H.A. Porta and K.B. Stolarsky, Asymmetric tent map expansions. I. Eventually periodic points, J. London Math. Soc. 47, 542–556 (1993).MATHCrossRefMathSciNetGoogle Scholar
  36. 36.
    J.C. Lagarias, H.A. Porta and K.B. Stolarsky, Asymmetric tent map expansions. II. Purely periodic points, Illinois J. Math. 38, 574–588 (1994).MATHMathSciNetGoogle Scholar
  37. 37.
    R. Lidl, G.L. Mullen and G. Turnwald, Dickson Polynomials, Longman, Harlow, 1993.MATHGoogle Scholar
  38. 38.
    R. Lidl and H. Niederreiter, Finite Fields, Cambridge University Press, Cambridge, 1997.Google Scholar
  39. 39.
    C.J. Moreno and O. Moreno, Exponential sums and Goppa codes: I, Proc. Amer. Math. Soc. 111, 523–531 (1991).MATHCrossRefMathSciNetGoogle Scholar
  40. 40.
    P. Morton, Periods of maps on irreducible polynomials over finite fields, Finite Fields Appl. 3, 11–24 (1997).MATHCrossRefMathSciNetGoogle Scholar
  41. 41.
    P. Morton, Arithmetic properties of periodic points of quadratic maps. II, Acta Arith. 87, 89–102 (1998).MATHMathSciNetGoogle Scholar
  42. 42.
    P. Morton and J.H. Silverman, Rational periodic points of rational functions, Internat. Math. Res. Notices 2, 97–110 (1994).CrossRefMathSciNetGoogle Scholar
  43. 43.
    P. Morton and J.H. Silverman, Periodic points, multiplicities, and dynamical units, J. Reine Angew. Math. 461, 81–122 (1995).MATHMathSciNetGoogle Scholar
  44. 44.
    P. Morton and F. Vivaldi, Bifurcations and discriminants for polynomial maps, Nonlinearity 8, 571–584 (1995).MATHCrossRefMathSciNetGoogle Scholar
  45. 45.
    W. Narkiewicz, Polynomial Mappings, Lect. Notes in Math., vol. 1600, Springer-Verlag, Berlin, 1995.MATHGoogle Scholar
  46. 46.
    H. Niederreiter, Quasi-Monte Carlo methods and pseudo-random numbers, Bull. Amer. Math. Soc. 84, 957–1041 (1978).MATHMathSciNetCrossRefGoogle Scholar
  47. 47.
    H. Niederreiter, The probabilistic theory of linear complexity, Advances in Cryptology — EUROCRYPT’ 88 (C.G. Günther, ed.), Lect. Notes in Comp. Sci., vol. 330, pp. 191–209, Springer-Verlag, Berlin, 1988.Google Scholar
  48. 48.
    H. Niederreiter, Random Number Generation and Quasi-Monte Carlo Methods, SIAM, Philadelphia, 1992.MATHGoogle Scholar
  49. 49.
    H. Niederreiter, New developments in uniform pseudorandom number and vector generation, Monte Carlo and Quasi-Monte Carlo Methods in Scientific Computing (H. Niederreiter and P.J.-S. Shiue, eds.), Lect. Notes in Stat., vol. 106, pp. 87–120, Springer-Verlag, New York, 1995.Google Scholar
  50. 50.
    H. Niederreiter, Design and analysis of nonlinear pseudorandom number generators, Monte Carlo Simulation (G.I. Schuëller and P.D. Spanos, eds.), pp. 3–9, A.A. Balkema Publishers, Rotterdam, 2001.Google Scholar
  51. 51.
    H. Niederreiter and I.E. Shparlinski, On the distribution and lattice structure of nonlinear congruential pseudorandom numbers, Finite Fields Appl. 5, 246–253 (1999).MATHCrossRefMathSciNetGoogle Scholar
  52. 52.
    H. Niederreiter and I.E. Shparlinski, On the distribution of pseudorandom numbers and vectors generated by inversive methods, Applicable Algebra Engrg. Comm. Comput. 10, 189–202 (2000).MATHCrossRefMathSciNetGoogle Scholar
  53. 53.
    H. Niederreiter and I.E. Shparlinski, Exponential sums and the distribution of inversive congruential pseudorandom numbers with prime-power modulus, Acta Arith. 92, 89–98 (2000).MATHMathSciNetGoogle Scholar
  54. 54.
    H. Niederreiter and I.E. Shparlinski, On the distribution of inversive congruential pseudorandom numbers in parts of the period, Math. Comp. 70, 1569–1574 (2001).MATHCrossRefMathSciNetGoogle Scholar
  55. 55.
    H. Niederreiter and I.E. Shparlinski, Recent advances in the theory of nonlinear pseudorandom number generators, Monte Carlo and Quasi-Monte Carlo Methods 2000 (K.-T. Fang, F.J. Hickernell and H. Niederreiter, eds.), pp. 86–102, Springer-Verlag, Berlin, 2002.Google Scholar
  56. 56.
    H. Niederreiter and I.E. Shparlinski, On the average distribution of inversive pseudorandom numbers, Finite Fields Appl. 8, 491–503 (2002).MATHMathSciNetGoogle Scholar
  57. 57.
    H. Niederreiter and I.E. Shparlinski, On the distribution of power residues and primitive elements in some nonlinear recurring sequences, Bull. Lond. Math. Soc. (to appear).Google Scholar
  58. 58.
    H. Niederreiter and A. Winterhof, Incomplete exponential sums over finite fields and their applications to new inversive pseudorandom number generators, Acta Arith. 93, 387–399 (2000).MATHMathSciNetGoogle Scholar
  59. 59.
    H. Niederreiter and A. Winterhof, On the distribution of compound inversive congruential pseudorandom numbers, Monatsh. Math. 132, 35–48 (2001).MATHCrossRefMathSciNetGoogle Scholar
  60. 60.
    H. Niederreiter and A. Winterhof, On the lattice structure of pseudorandom numbers generated over arbitrary finite fields, Applicable Algebra Engrg. Comm. Comput. 12, 265–272 (2001).MATHCrossRefMathSciNetGoogle Scholar
  61. 61.
    H. Niederreiter and A. Winterhof, On a new class of inversive pseudorandom numbers for parallelized simulation methods, Periodica Math. Hungarica 42, 77–87 (2001).MATHCrossRefMathSciNetGoogle Scholar
  62. 62.
    H. Niederreiter and A. Winterhof, On the distribution of points in orbits of PGL(2, q) acting on GF(q n), preprint, 2002.Google Scholar
  63. 63.
    A.G. Postnikov, Ergodic Problems in the Theory of Congruences and of Diophantine Approximations, Proc. Steklov Inst. Math., vol. 82, Amer. Math. Soc., Providence, RI, 1967.Google Scholar
  64. 64.
    C. Robinson, Dynamical Systems: Stability, Symbolic Dynamics, and Chaos, CRC Press, Boca Raton, FL, 1999.MATHGoogle Scholar
  65. 65.
    J. Schmeling, Symbolic dynamics for β-shifts and self-normal numbers, Ergodic Theory Dynam. Systems 17, 675–694 (1997).MATHCrossRefMathSciNetGoogle Scholar
  66. 66.
    K. Schmidt, Dynamical Systems of Algebraic Origin, Progress in Math., vol. 128, Birkhäuser Verlag, Basel, 1995.MATHGoogle Scholar
  67. 67.
    I.E. Shparlinski, Exponential sums in coding theory, cryptology and algorithms, Coding Theory and Cryptology (H. Niederreiter, ed.), pp. 323–383, World Scientific Publ., Singapore, 2002.Google Scholar
  68. 68.
    J.H. Silverman, The field of definition for dynamical systems on ℙ1, Compositio Math. 98, 269–304 (1995).MATHMathSciNetGoogle Scholar
  69. 69.
    J.H. Silverman, The space of rational maps on ℙ1, Duke Math. J. 94, 41–77 (1998).MATHCrossRefMathSciNetGoogle Scholar
  70. 70.
    S.B. Stečkin, An estimate of a complete rational trigonometric sum (Russian), Trudy Mat. Inst. Steklov. 143, 188–207 (1977).MathSciNetGoogle Scholar
  71. 71.
    G.J. Wirsching, The Dynamical System Generated by the 3n + 1 Function, Lect. Notes in Math., vol. 1681, Springer-Verlag, Berlin, 1998.MATHCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2003

Authors and Affiliations

  • Harald Niederreiter
    • 1
  • Igor E. Shparlinski
    • 2
  1. 1.Department of MathematicsNational University of SingaporeSingaporeRepublic of Singapore
  2. 2.Department of ComputingMacquarie UniversityAustralia

Personalised recommendations