Building a Digital Collection of Web-Pages: Access and Filtering Information with Textual Expansion

  • Omar Larouk
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 2166)

Abstract

This paper describes an approach to the design of an information retrieval of providing an search of users. Textual analysis is a part of information treatment systems. Next generation of information systems will rely on collaborative agents for playing a fundamental action in actively searching and finding relevant information in complex systems. The explosive growth of Web sites and Usenet news demands effectives filtering solutions. The access to digital data through WEB servers is facilitated by search engines. A number of Internet search engines provide classified search directories. The aim of the present paper is to suggest a method of filtering based only on the address URL, titles, abstracts. The problem of information searching in texts is mainly a linguistic problem. The objective is to construct a system for access and filtering information with using the model of Noun Phrases (NP). The intensional predicate and NP are used from retrieval, navigations (discrete & continue) and filtering the solutions captured from the WEB.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Belkin, N.J., Croft, W.B.: Information Filtering and Information Retrieval: Two Sides of the Same Coin? In: Communication of the ACM. Vol.35,No. 12., (1992), pp. 29–38.CrossRefGoogle Scholar
  2. 2.
    Blair, D.C.: Language and Representation in Information Retrieval. Elsevier. Amsterdam (1990).Google Scholar
  3. 3.
    Bush, V.: As We May Think. The Atlantic Monthly. 6 (1945), pp. 101–108.Google Scholar
  4. 4.
    Copestake, A., Sparck-Jones, K. (1990).: Natural Language Interfaces To Databases. The Knowledge Engineering review, no 5, part 4.Google Scholar
  5. 5.
    Delisle, C., Larouk, O.: Convergence et Divergence des Moteurs de recherche: Tests sur les moteurs et méta-moteurs. Pré-rapport DEA-Sc. de l’information, ENSSIB, Lyon (1999), 18 p.Google Scholar
  6. 6.
    Foltz, P.W, Dumais, T.: Personalized Information Delivery: An Analysis of Information Filtering Methods. In: Communication of the ACM. Vol.35,No. 12, (1992), pp. 51–60.CrossRefGoogle Scholar
  7. 7.
    Grishman, R.: Natural Language Interfaces. Journal of the ASIS, Vol 35, (1984). pp. 291–296.Google Scholar
  8. 8.
    Larouk, O.: Application of Non-Classical Logics to Optimise Textual Knowledge Representation in an Information Retrieval System. in HEURISTICS: THE JOURNAL of Knowledge Engineering. Volume 6, Number 1 Spring (1993), Gaithersburg, MD-USA; pp. 25–37.Google Scholar
  9. 9.
    Le Guern, M.: FRUn Analyseur Morpho-Syntaxique pour l’Indexation Automatique. Le Français Moderne, tome LIX, no 1, (1992), pp. 22–35.Google Scholar
  10. 10.
    Nicols, D., Pemberton, D., Dalhoumi, S., Larouk, O., Belisle, C., Twidale, M.: DEBORA: Developing an interface to Support Collaboration in a digital Library. ECDL’2000, Research and Advanced Technology for Digital Libraies. Lecture Notes in Computer Science-no 1923, (J. Borbinha & T. Baker eds.), Springer-Verlag, (2000), Lisbon, pp. 239–248.CrossRefGoogle Scholar
  11. 11.
    Rich, E.: Natural Language Interfaces. Computer. (1984).Google Scholar
  12. 12.
    Salton, G, Mc Gill, M.J.: Introduction to Modern Information Retrieval. Mc Graw-Hill, New York, (1983).MATHGoogle Scholar
  13. 13.
    Smeaton, A.F, Van Rijsbergen, C.J.: Experiments on Incorporating Syntactic Processing of User Queries into a Document Retrieval Strategy. ACM-SIGIR, Grenoble, (1988), pp. 31–51.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2001

Authors and Affiliations

  • Omar Larouk
    • 1
  1. 1.École Nationale Supérieure des Sciences de l’Information et des BibliothèquesLyon-Villeurbanne CedexFrance

Personalised recommendations