Algorithms for the Construction of Concept Lattices and Their Diagram Graphs

  • Sergei O. Kuznetsov
  • Sergei A. Obiedkov
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 2168)

Abstract

Several algorithms that generate the set of all formal concepts and graphs of line (Hasse) diagrams of concept lattices are considered. Some modifications of well-known algorithms are proposed. Algorithmic complexity of the algorithms is studied both theoretically (in the worst case) and experimentally. Conditions of preferable use of some algorithms are given in terms of density/sparsity of underlying formal contexts.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Aho, A.V., Hopcroft, J.E., Ullmann, J.D., Data Structures and Algorithms, Reading, Addison-Wesley (1983).MATHGoogle Scholar
  2. 2.
    Bordat, J.P., Calcul pratique du treillis de Galois d’une correspondance, Math. Sci. Hum., No. 96, (1986) 31–47.Google Scholar
  3. 3.
    Carpineto, C., Giovanni, R., A Lattice Conceptual Clustering System and Its Application to Browsing Retrieval, Machine Learning, no. 24 (1996) 95–122.Google Scholar
  4. 4.
    Chein, M., Algorithme de recherche des sous-matrices premières d’une matrice, Bull. Math. Soc. Sci. Math. R.S. Roumanie, no. 13 (1969) 21–25.Google Scholar
  5. 5.
    Dowling, C.E., On the Irredundant Generation of Knowledge Spaces, J. Math. Psych., vol. 37, No. 1 (1993) 49–62.MATHCrossRefMathSciNetGoogle Scholar
  6. 6.
    Finn, V.K., Plausible Reasoning in Systems of JSM Type, Itogi Nauki i Tekhniki, Ser. Informatika, vol. 15 (1991) 54–101.Google Scholar
  7. 7.
    Ganter, B., Two Basic Algorithms in Concept Analysis, FB4-Preprint No. 831, TH Darmstadt (1984).Google Scholar
  8. 8.
    Ganter, B., Wille, R., Formal Concept Analysis. Mathematical Foundations, Springer, (1999).Google Scholar
  9. 9.
    Ganter B., Kuznetsov, S., Formalizing Hypotheses with Concepts, Proc. of the 8th International Conference on Conceptual Structures, ICCS 2000, Lecture Notes in Artificial Intelligence, vol. 1867 (2000) 342–356.Google Scholar
  10. 10.
    Ganter, B., Reuter, K., Finding All Closed Sets: A General Approach, Order, vol. 8, (1991) 283–290.MATHCrossRefMathSciNetGoogle Scholar
  11. 11.
    Godin, R., Missaoui, R., Alaoui, H., Incremental Concept Formation Algorithms Based on Galois Lattices, Computation Intelligence (1995).Google Scholar
  12. 12.
    Goldberg, L.A., Efficient Algorithms for Listing Combinatorial Structures, Cambridge University Press (1993).Google Scholar
  13. 13.
    Guénoche, A., Construction du treillis de Galois d’une relation binaire, Math. Inf. Sci. Hum., no. 109 (1990) 41–53.Google Scholar
  14. 14.
    Johnson, D.S., Yannakakis, M., Papadimitriou, C.H., On Generating all Maximal Independent Sets, Inf. Proc. Let., vol. 27 (1988) 119–123.MATHCrossRefMathSciNetGoogle Scholar
  15. 15.
    Kuznetsov, S.O., Interpretation on Graphs and Complexity Characteristics of a Search for Specific Patterns, Automatic Documentation and Mathematical Linguistics, vol. 24, No. 1 (1989) 37–45.Google Scholar
  16. 16.
    Kuznetsov, S.O., A Fast Algorithm for Computing All Intersections of Objects in a Finite Semi-lattice, Automatic Documentation and Mathematical Linguistics, vol. 27, No. 5 (1993) 11–21.Google Scholar
  17. 17.
    Kuznetsov, S.O., Obiedkov S.A., Algorithms for the Construction of the Set of All Concepts and Their Line Diagram, Preprint MATH-A1-05, TU-Dresden, June 2000.Google Scholar
  18. 18.
    Lindig, C., Algorithmen zur Begriffsanalyse und ihre Anwendung bei Softwarebibliotheken, (Dr.-Ing.) Dissertation, Techn. Univ. Braunschweig (1999).Google Scholar
  19. 19.
    Mephu Nguifo, E., Njiwoua, P., Using Lattice-Based Framework As a Tool for Feature Extraction, in Feature Extraction, Construction and Selection: A Data Mining Perspective, H. Liu and H. Motoda (eds.), Kluwer (1998).Google Scholar
  20. 20.
    Norris, E.M., An Algorithm for Computing the Maximal Rectangles in a Binary Relation, Revue Roumaine de Mathématiques Pures et Appliquées, no. 23(2) (1978) 243–250.MATHMathSciNetGoogle Scholar
  21. 21.
    Nourine L., Raynaud O., A Fast Algorithm for Building Lattices, Information Processing Letters, vol. 71 (1999) 199–204.MATHCrossRefMathSciNetGoogle Scholar
  22. 22.
    Stumme G., Taouil R., Bastide Y., Pasquier N., Lakhal L., Fast Computation of Concept Lattices Using Data Mining Techniques, in Proc. 7th Int. Workshop on Knowledge Representation Meets Databases (KRDB 2000) 129–139.Google Scholar
  23. 23.
    Stumme G., Wille R., and Wille U., Conceptual Knowledge Discovery in Databases Using Formal Concept Analysis Methods, in Proc. 2nd European Symposium on Principles of Data Mining and Knowledge Discovery (PKDD’98).Google Scholar
  24. 24.
    Waiyamai K., Lakhal L., Knowledge Discovery from Very Large Databases Using Frequent Concept Lattices, in Proc. 11th European Conference on Machine Learning (ECML’2000), 437–445.Google Scholar
  25. 25.
    Zabezhailo, M.I., Ivashko, V.G., Kuznetsov, S.O., Mikheenkova, M.A., Khazanovskii, K.P., and Anshakov, O.M., Algorithms and Programs of the JSM-Method of Automatic Hypothesis Generation, Automatic Documentation and Mathematical Linguistics, vol. 21, No. 5 (1987) 1–14.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2001

Authors and Affiliations

  • Sergei O. Kuznetsov
    • 1
  • Sergei A. Obiedkov
    • 2
  1. 1.All-Russia Institute for Scientific and Technical Information (VINITI)MoscowRussia
  2. 2.Russian State University for the HumanitiesMoscowRussia

Personalised recommendations