Advertisement

Declustering Spatial Objects by Clustering for Parallel Disks

  • Hak-Cheol Kim
  • Ki-Joune Li
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 2113)

Abstract

In this paper, we propose an efficient declustering algorithm which is adaptable in different data distribution. Previous declustering algorithms have a potential drawback by assuming data distribution is uniform. However, our method shows a good declustering performance for spatial data regardless of data distribution by taking it into consideration. First, we apply a spatial clustering algorithm to find the distribution in the underlying data and then allocate a disk page to each unit of cluster. Second, we analyize the effect of outliers on the performance of declustering algorithm and propose to handle them separately. Experimental results show that these approaches outperform traditional declustering algorithms based on tiling and mapping function such as DM, FX, HCAM and Golden Ratio Sequence.

Keywords

Spatial Object Average Response Time Skewed Data Uniform Data Parallel Disk 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Du, H.C., Sobolewski, J.S.: Disk Allocation for Cartisian Files on Multiple-Disk Systems. Int. J.ACM TODS, Vol. 7,No.1, (1982) 82–102MATHCrossRefGoogle Scholar
  2. 2.
    Fang, M.T., Lee, R.C.T., Chang, C.C.: The Idea of De-Clustering and Its Applications. VLDB (1986) 181–188Google Scholar
  3. 3.
    Faloutsos, C., Metaxas, D.: Disk Allocation methods using error correcting codes. Int. J. IEEE Trans on Computers, Vol. 40,No. 8, (1991) 907–914CrossRefGoogle Scholar
  4. 4.
    Faloutsos, C., Bhagwat, P.: Declustering using fractals. Parallel and Distributed Information Systems Conf (1993) 18–25Google Scholar
  5. 5.
    Zhang, T., Ramakrishnan, R., Livny, M.: BIRCH: An efficient data clustering methods for very large databases. SIGMOD (1996) 103–114Google Scholar
  6. 6.
    Kang, I.S., Kim, T.W.,, Li, K.J.: A spatial data mining method by delaunay triangulation. Proc. ACM-GIS. (1997) 35–39Google Scholar
  7. 7.
    Leutenegger, S.T., Lopez, M.A., Edgington, J.M.: STR: A simple and efficient algorithm for r-tree packing. ICDE. (1997) 497–506Google Scholar
  8. 8.
    Abdel-Ghaffar, K., Abbadi, A.E.: Optimal allocation of two-dimensional data. ICDT (1997) 409–418Google Scholar
  9. 9.
    Sheikhleslami, G., Chatterjee, S., Zhang, A.:Wavecluster: A multi-resolusion clustering approach for very large spatial databases. VLDB (1998) 428–439Google Scholar
  10. 10.
    Guha, S., Rastogi, R., Shim, K.: CURE: An efficient clustering algorithms for large databases. SIGMOD (1998) 73–84Google Scholar
  11. 11.
    Knorr, E., Ng, R.: Algorithms for Mining Distance-Based Outliers in Large Datasets. VLDB (1998) 392–403Google Scholar
  12. 12.
    Barnett, V., Lewis, T.: Outliers in Statistical Data. Third Edition, John Wiley & Sons Ltd. (1998)Google Scholar
  13. 13.
    Moon, B.K., Saltz, J.H.: Scalability Analysis of Declustering Methods for Multidimensional Range Queries. Int. J. IEEE TKDE, Vol. 10,No. 2, (1998) 310–327Google Scholar
  14. 14.
    Prabhakar, S., Abdel-Ghaffar, K., El Abbadi, A.: Cyclic allocation of twodimensional data. ICDE (1998) (94–101)Google Scholar
  15. 15.
    Ramaswamy, S., Rastogi, R., Shim, K.: Efficient Algorithms for Mining Outliers from Large Data Sets. SIGMOD (2000) (427–438)Google Scholar
  16. 16.
    Bhatia, R., Sinha, R.K., Chen, C.-M.:Declustering using golden ratio sequences. ICDE (2000) 271–280Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2001

Authors and Affiliations

  • Hak-Cheol Kim
    • 1
  • Ki-Joune Li
    • 1
  1. 1.Dept of Computer SciencePusan National UniversityKorea

Personalised recommendations