Advertisement

Calculational Reasoning Revisited An Isabelle/Isar Experience

  • Gertrud Bauer
  • Markus Wenzel
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 2152)

Abstract

We discuss the general concept of calculational reasoning within Isabelle/Isar, which provides a framework for high-level natural deduction proofs that may be written in a human-readable fashion. Setting out from a few basic logical concepts of the underlying meta-logical framework of Isabelle, such as higher-order unification and resolution, calculational commands are added to the basic Isar proof language in a flexible and non-intrusive manner. Thus calculational proof style may be combined with the remaining natural deduction proof language in a liberal manner, resulting in many useful proof patterns. A case-study on formalizing Computational Tree Logic (CTL) in simply-typed set-theory demonstrates common calculational idioms in practice.

Keywords

Theorem Prove Natural Deduction High Order Logic Monotonicity Constraint Computational Tree Logic 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    R.J. Back, J. Grundy, and J. von Wright. Structured calculational proof. Formal Aspects of Computing, 9, 1997.Google Scholar
  2. 2.
    R.J. Back and J. von Wright. Structured derivations: A method for doing highschool mathematics carefully. Technical report, Turku Centre for C.S., 1999.Google Scholar
  3. 3.
    G. Bauer and M. Wenzel. Computer-assisted mathematics at work — the Hahn-Banach theorem in Isabelle/Isar. In T. Coquand, P. Dybjer, B. Nordström, and J. Smith, editors, Types for Proofs and Programs: TYPES’99, LNCS, 2000.Google Scholar
  4. 4.
    Y. Bertot, G. Dowek, A. Hirschowitz, C. Paulin, and L. Thery, editors. Theorem Proving in Higher Order Logics: TPHOLs’ 99, LNCS 1690, 1999.zbMATHGoogle Scholar
  5. 5.
    E.W. Dijkstra and C.S. Scholten. Predicate Calculus and Program Semantics Texts and monographs in computer science. Springer, 1990.Google Scholar
  6. 6.
    G. Gentzen. Untersuchungen über das logische Schlieβen. Mathematische Zeitschrift, 1935.Google Scholar
  7. 7.
    J. Grundy. Window inference in the HOL system. In M. Archer, J. J. Joyce, K. N. Levitt, and P. J. Windley, editors, Proceedings of the International Workshop on HOL. ACM SIGDA, IEEE Computer Society Press, 1991.Google Scholar
  8. 8.
    J. Harrison. A Mizar mode for HOL. In J. Wright, J. Grundy, and J. Harrison, editors, Theorem Proving in Higher Order Logics: TPHOLs’ 96, LNCS 1125, 1997.Google Scholar
  9. 9.
    K. McMillan. Lecture notes on verification of digital and hybrid systems. NATO summer school, http://www-cad.eecs.berkeley.edu/~kenmcmil/tutorial/toc.html.
  10. 10.
    K. McMillan. Symbolic Model Checking: an approach to the state explosion problem. PhD thesis, Carnegie Mellon University, 1992.Google Scholar
  11. 11.
    Mizar mathematical library. http://www.mizar.org/library/.
  12. 12.
    M. Muzalewski. An Outline of PC Mizar. Fondation of Logic, Mathematics and Informatics — Mizar Users Group, 1993.Google Scholar
  13. 13.
    L.C. Paulson. Isabelle: A Generic Theorem Prover. LNCS 828. 1994.zbMATHGoogle Scholar
  14. 14.
    M. Simons. Proof presentation for Isabelle. In E. L. Gunter and A. Felty, editors, Theorem Proving in Higher Order Logics: TPHOLs’ 97, LNCS 1275, 1997.CrossRefGoogle Scholar
  15. 15.
    D. Syme. DECLARE: A prototype declarative proof system for higher order logic. Technical Report 416, University of Cambridge Computer Laboratory, 1997.Google Scholar
  16. 16.
    D. Syme. Three tactic theorem proving. In G. Dowek, A. Hirschowitz, C. Paulin, and L. Thery, editors. Theorem Proving in Higher Order Logics: TPHOLs’ 99, LNCS 1690, 1999. Bertot et al. [4]}.CrossRefGoogle Scholar
  17. 17.
    A. Trybulec. Some features of the Mizar language. Presented at a workshop in Turin, Italy, 1993.Google Scholar
  18. 18.
    R. Verhoeven and R. Backhouse. Interfacing program construction and verification. In J. Wing and J. Woodcock, editors, FM99: The World Congress in Formal Methods, volume 1708 and 1709 of LNCS, 1999.Google Scholar
  19. 19.
    M. Wenzel. Isar — a generic interpretative approach to readable formal proof documents. In G. Dowek, A. Hirschowitz, C. Paulin, and L. Thery, editors. Theorem Proving in Higher Order Logics: TPHOLs’ 99, LNCS 1690, 1999. Bertot et al. [4]}.CrossRefGoogle Scholar
  20. 20.
    M. Wenzel. The Isabelle/Isar Reference Manual, 2000. Part of the Isabelle distribution, http://isabelle.in.tum.de/doc/isar-ref.pdf.
  21. 21.
    M. Wenzel. Some aspects of Unix file-system security. Isabelle/Isar proof document, http://isabelle.in.tum.de/library/HOL/Unix/document.pdf, 2001.
  22. 22.
    F. Wiedijk. Mizar: An impression. Unpublished paper, 1999. http://www.cs.kun.nl/~freek/mizar/mizarintro.ps.gz.
  23. 23.
    V. Zammit. On the implementation of an extensible declarative proof language. In G. Dowek, A. Hirschowitz, C. Paulin, and L. Thery, editors. Theorem Proving in Higher Order Logics: TPHOLs’ 99, LNCS 1690, 1999. Bertot et al. [4]}.CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2001

Authors and Affiliations

  • Gertrud Bauer
    • 1
  • Markus Wenzel
    • 1
  1. 1.Institut für InformatikTechnische Universität MünchenMünchenGermany

Personalised recommendations