Fast Key Exchange with Elliptic Curve Systems

  • Richard Schroeppel
  • Hilarie Orman
  • Sean O’Malley
  • Oliver Spatscheck
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 963)

Abstract

The Diffie-Hellman key exchange algorithm can be implemented using the group of points on an elliptic curve over the field \( \mathbb{F}_{2^n } \) . A software version of this using n = 155 can be optimized to achieve computation rates that are slightly faster than non-elliptic curve versions with a similar level of security. The fast computation of reciprocals in \( \mathbb{F}_{2^n } \) is the key to the highly efficient implementation described here.

References

  1. 1.
    G. Agnew, T. Beth, R. Mullin and S. Vanstone, “Arithmetic Operations in GF(2m)”, Journal of Cryptology, 6 (1993), 3–13.MATHCrossRefMathSciNetGoogle Scholar
  2. 2.
    G. Agnew, R. Mullin and S. Vanstone, “An Implementation of Elliptic Curve Cryptosystems over \( F_{2^{155} } \)”, IEEE Journal on Selected Areas in Communications, 11 (1993), 804–813.CrossRefGoogle Scholar
  3. 3.
    G. Agnew, R. Mullin, I. Onyszchuk and S. Vanstone, “An Implementation for a Fast Public-Key Cryptosystem”, Journal of Cryptology, 3 (1991), 63–79.MATHCrossRefMathSciNetGoogle Scholar
  4. 4.
    Elwyn Berlekamp, Algebraic Coding Theory, McGraw-Hill, 1968, p.41.Google Scholar
  5. 5.
    T. Beth and F. Schaefer, “Non Supersingular Elliptic Curves for Public Key Cryptosystems”, Advances in Cryptology — EUROCRYPT’ 91, Lecture Notes in Computer Science, 547 (1991), Springer-Verlag, 316–327.Google Scholar
  6. 6.
    A. D. Booth, “A Signed Binary Multiplication Technique”, Q. J. Mech. Appl. Math.4 (1951), 236–240.MATHCrossRefMathSciNetGoogle Scholar
  7. 7.
    J. Bos and M. Coster, “Addition Chain Heuristics”, Advances in Cryptology — CRYPTO’ 89, Lecture Notes in Computer Science, 435 (1990), Springer-Verlag, 400–407.Google Scholar
  8. 8.
    E. Brickell, D. Gordon, K. McCurley, and D. Wilson, “Fast Exponentiation with Precomputation (Extended Abstract)”, Advances in Cryptology — EUROCRYPT’ 92, Lecture Notes in Computer Science, 658 (1993), Springer-Verlag, 200–207.CrossRefGoogle Scholar
  9. 9.
    D. Coppersmith, A. Odlyzko, and R. Schroeppel, “Discrete Logarithms in GF[p]”, Algorithmica, 1 (1986), 1–15.MATHCrossRefMathSciNetGoogle Scholar
  10. 10.
    Jean-Marc Couveignes and François MorainAlgorithmic Number Theory: First International Symposium, Lecture Notes in Computer Science, 877 (1994), Springer-Verlag, 43–58.Google Scholar
  11. 11.
    Whitfield Diffie and M. E. Hellman, “New Directions in Cryptography”, IEEE Transactions on Information Theory, IT-22, n. 6, Nov. 1976, pp 644–654CrossRefMathSciNetGoogle Scholar
  12. 12.
    T. ElGamal, “A Public Key Cryptosystem and a Signature Scheme Based on Discrete Logarithms”, IEEE Trans. on Information Theory, 31 (1985), 469–472.MATHCrossRefMathSciNetGoogle Scholar
  13. 13.
    Torbjorn Granlund, GMP, the GNU bignum package, version 1.3.2a, July 1994. ftp://prep.ai.mit.edu/pub/gnu/gmp-1.3.2.tar.gz
  14. 14.
    Greg Harper, Alfred Menezes, and Scott Vanstone “Public-Key Cryptosystems with Very Small Key Lengths”, Advances in Cryptology — EUROCRYPT’ 92, Lecture Notes in Computer Science, 658 (1993), Springer-Verlag, 163–173.CrossRefGoogle Scholar
  15. 15.
    The Internet Engineering Task Force Working Group on Security for IPv4; drafts on key management available via FTP from the archives at ds.internic.net; http://internet-drafts/draft-karn-photuris-00.txt
  16. 16.
    T. Itoh, O. Teechi, and S. Tsujii, “A Fast Algorithm for Computing Multiplicative Inverses in GF(2t) Using Normal Bases” (in Japanese), J. Society for Electronic Communications (Japan), 44 (1986), 31–36.Google Scholar
  17. 17.
    A. Karatsuba, Doklady Akademiia Nauk SSSR145 (1962), 293–294.Google Scholar
  18. 18.
    Donald E. Knuth, Seminumerical Algorithms, The Art of Computer Programming, 2 Addison Wesley 1969Google Scholar
  19. 19.
    Neal Koblitz, “Elliptic Curve Cryptosystems”, Mathematics of Computation, 48 n. 177 (1987), 203–209.MATHCrossRefMathSciNetGoogle Scholar
  20. 20.
    Neal Koblitz, “Constructing Elliptic Curve Cryptosystems in Characteristic 2”, Advances in Cryptology — CRYPTO’ 90 Proceedings, Lecture Notes in Computer Science, 537 (1991), Springer-Verlag, 156–167.Google Scholar
  21. 21.
    B. La Macchia and A. Odlyzko, “Computation of Discrete Logarithms in Prime Fields”, Designs, Codes and Cryptography, 1 (1991), p. 47–62.CrossRefGoogle Scholar
  22. 22.
    G. Lay and H. Zimmer, “Constructing Elliptic Curves with Given Group Order over Large Finite Fields”, Algorithmic Number Theory: First International Symposium, Lecture Notes in Computer Science, 877 (1994), Springer-Verlag, 250–263.Google Scholar
  23. 23.
    Alfred J. Menezes, Elliptic Curve Public Key Cryptosystems, Kluwer Academic Publishers, 1993.Google Scholar
  24. 24.
    Alfred J. Menezes, Minghua Qu, and Scott A. Vanstone, “Standard for RSA, Diffie-Hellman and Related Public Key Cryptography”, Working Draft of IEEE P1363 Standard, April 24, 1995.Google Scholar
  25. 25.
    Victor S. Miller, “Use of Elliptic Curves in Cryptography”, Advances in Cryptology — CRYPTO’ 85 Proceedings, Lecture Notes in Computer Science, 218 (1986), Springer-Verlag, 417–426.CrossRefGoogle Scholar
  26. 26.
    Peter L. Montgomery, “Modular Multiplication without Trial Division”, Mathematics of Computation, 44 (1985), 519–521.MATHCrossRefMathSciNetGoogle Scholar
  27. 27.
    P. van Ooorschot and M. Wiener, “Parallel Collision Search with Application to Hash Functions and Discrete Logarithms”, 2nd ACM Conference on Computer and Communications Security, Fairfax, Virginia, November 4, 1994.Google Scholar
  28. 28.
    J. Pollard, “Monte Carlo Methods for Index Computation mod p”, Mathematics of Computation, 32 (1978), 918–924.MATHCrossRefMathSciNetGoogle Scholar
  29. 29.
    Jörg Sauerbrey and Andreas Dietel “Resource Requirements for the Application of Addition Chains in Modulo Exponentiation”, Advances in Cryptology — EUROCRYPT’ 92, Lecture Notes in Computer Science, 658 (1993), Springer-Verlag, 174–182.CrossRefGoogle Scholar
  30. 30.
    R. Schoof, “Elliptic Curves Over Finite Fields and the Computation of Square Roots mod p”, Mathematics of Computation, 44 (1985), 483–494.MATHCrossRefMathSciNetGoogle Scholar
  31. 31.
    Rich Schroeppel, Hilarie Orman, Sean O’Malley, and Oliver Spatscheck, “Fast Key Exchange with Elliptic Curve Systems”, Univ. of Ariz. Comp. Sci. Tech. Report 95-03 (1995).Google Scholar
  32. 32.
    J. H. Silverman, The Arithmetic of Elliptic Curves, Springer Graduate Texts in Mathematics 106 (1992).Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1995

Authors and Affiliations

  • Richard Schroeppel
    • 1
  • Hilarie Orman
    • 1
  • Sean O’Malley
    • 1
  • Oliver Spatscheck
    • 1
  1. 1.Department of Computer ScienceUniversity of ArizonaUSA

Personalised recommendations