Optimizing Metacomputing with Communication-Computation Overlap

  • Françoise Baude
  • Denis Caromel
  • Nathalie Furmento
  • David Sagnol
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 2127)


In the framework of distributed object systems, this paper presents the concepts and an implementation of an overlapping mechanism between communication and computation. This mechanism allows to decrease the execution time of a remote method invocation with parameters of large size. Its implementation and related experiments in the C++// language running on top of Globus and Nexus are described.


Distributed Objects C++ Metacomputing Nexus/Globus Lightweight Process Remote Method Invocation Pipelining Future Overlapping communication and computation 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    F. Baude, D. Caromel, N. Furmento, and D. Sagnol. Overlapping Communication with Computation in Distributed Object Systems. In HPCN Europe’99 LNCS 1593, 744–753, 1999.Google Scholar
  2. 2.
    A.D. Birrell and B.J. Nelson. Implementing Remote Procedure Calls. ACM Transactions on Computer Systems, 2(1): 39–59, Feb. 1984.Google Scholar
  3. 3.
    T. Brandes and F. Desprez. Implementing Pipelined Computation and Communication in an HPF Compiler. In Euro-Par’96, J:459–462, Aug. 1996.Google Scholar
  4. 4.
    J.-P. Briot, R. Guerraoui and K.-P. Lhr. Concurrency and Distribution in Object-Oriented Programming. ACM Computing Surveys, 30(3), Sep. 1998.Google Scholar
  5. 5.
    D. Caromel. Towards a Method of Object-Oriented Concurrent Programming. Communications of the ACM, 36(9):90–102, Sep. 1993.Google Scholar
  6. 6.
    D. Caromel, F. Belloncle and Y. Roudier. Parallel Programming Using C++, chapter The C++// System, p 257–296. MIT Press, 1996. ISBN 0-262-73118-5.Google Scholar
  7. 7.
    D. Caromel, W. Klauser and J. Vayssiere, Towards Seamless Computing and Meta-computing in Java, Concurrency Practice and Experience, 10(11–13), Nov. 1998.Google Scholar
  8. 8.
    F. Desprez, P. Ramet, and J. Roman. Optimal Grain Size Computation for Pipelined Algorithms. In Euro-Par’96, T:165–172, Aug. 1996.Google Scholar
  9. 9.
    I. Foster, C. Kesselman. Globus: A Metacomputing Infrastructure Toolkit. International Journal of Supercomputer Applications, 11(2):115–128, 1997.CrossRefGoogle Scholar
  10. 10.
    I. Foster, C. Kesselman, and S. Tuecke. The Nexus Approach to Integrating Multithreading and Communication. JPDC, 37:70–82, 1996.Google Scholar
  11. 11.
    A. Geist et al. Pvm Parallel Virtual Machine: a userrss guide and tutorial for networked parallel computing. MIT Press, 1994.Google Scholar
  12. 12.
    R. Halstead. Parallel Symbolic Computing, Computer, 19(8):35–43, Aug. 1986Google Scholar
  13. 13.
    G. Kiczales, J. desRiviéres, and D.G. Bobrow. The Art of the Metaobject Protocol. MIT Press, 1991.Google Scholar
  14. 14.
    R. Namyst and J-F. Méhaut. PM2: Parallel Multithreaded Machine. A Computing Environment for Distributed Architectures. In ParCo’95, Gent, Belgium, Sep. 1995.Google Scholar
  15. 15.
    M. Snir and W. Gropp et al. MPI: The Complete Reference. MIT Press, 1998.Google Scholar
  16. 16.
    Sun Microsystems. Java RMI Tutorial, Nov. 1996.
  17. 17.
    C.W. Tseng. An Optimizing Fortran D Compiler for MIMD Distributed-Memory Machines. PhD thesis, Rice University, Jan. 1993.Google Scholar
  18. 18.
    Videira Lopes. Adaptive Parameter Passing. In ISOTAS’96, Mar. 1996.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2001

Authors and Affiliations

  • Françoise Baude
    • 1
  • Denis Caromel
    • 1
  • Nathalie Furmento
    • 1
  • David Sagnol
    • 1
  1. 1.OASIS - Joint Project CNRS / INRIA / University of Nice Sophia - Antipolis - INRIAValbonneFrance

Personalised recommendations