Hessian Elliptic Curves and Side-Channel Attacks

  • Marc Joye
  • Jean-Jacques Quisquater
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 2162)

Abstract

Side-channel attacks are a recent class of attacks that have been revealed to be very powerful in practice. By measuring some side-channel information (running time, power consumption,...), an attacker is able to recover some secret data from a carelessly implemented crypto-algorithm. This paper investigates the Hessian parameterization of an elliptic curve as a step towards resistance against such attacks in the context of elliptic curve cryptography. The idea is to use the same procedure to compute the addition, the doubling or the subtraction of points. As a result, this gives a 33% performance improvement as compared to the best reported methods and requires much less memory.

Keywords

Elliptic curves Cryptography Side-channel attacks Implementation Smart-cards 

References

  1. 1.
    IEEE Std 1363-2000, IEEE standard specifications for public-key cryptography, IEEE Computer Society, August 29, 2000.Google Scholar
  2. 2.
    J. W. S. Cassels, Lectures on elliptic curves, London Mathematical Society Student Texts, vol. 24, Cambridge University Press, 1991.Google Scholar
  3. 3.
    D. V. Chudnovsky and G. V. Chudnovsky, Sequences of numbers generated by addition in formal groups and new primality and factorization tests, Advances in Applied Math. 7 (1986/7), 385–434.MathSciNetMATHGoogle Scholar
  4. 4.
    Christophe Clavier and Marc Joye, Universal exponentiation algorithm: A first step towards provable SPA-resistance, these proceedings.Google Scholar
  5. 5.
    Henri Cohen, A course in computational algebraic number theory, Graduate Texts in Mathematics, vol. 138, Springer-Verlag, 1993.Google Scholar
  6. 6.
    Henri Cohen, Atsuko Miyaji, and Takatoshi Ono, Efficient elliptic curve exponentiation using mixed coordinates, Advances in Cryptology-ASIACRYPT’ 98 (K. Ohta and D. Pei, eds.), Lecture Notes in Computer Science, vol. 1514, Springer-Verlag, 1998, pp. 51–65.Google Scholar
  7. 7.
    Jean-Sébastien Coron, Resistance against differential power analysis for elliptic curve cryptosystems, Cryptographic Hardware and Embedded Systems (CHES’ 99) (Ç.K. Koç and C. Paar, eds.), Lecture Notes in Computer Science, vol. 1717, Springer-Verlag, 1999, pp. 292–302.CrossRefGoogle Scholar
  8. 8.
    Erik De Win, Serge Mister, Bart Preneel, and Michael Wiener, On the performance of signature schemes based on elliptic curves, Algorithmic Number Theory Symposium (J.-P. Buhler, ed.), Lecture Notes in Computer Science, vol. 1423, Springer-Verlag, 1998, pp. 252–266.CrossRefGoogle Scholar
  9. 9.
    M. Desboves, Résolution, en nombres entiers et sous sa forme la plus générale, de l’équation cubique, homogène, à trois inconnues, Ann. de Mathémat. 45 (1886), 545–579.Google Scholar
  10. 10.
    Otto Hesse, Über die Elimination der Variabeln aus drei algebraischen Gleichungen vom zweiten Grade mit zwei Variabeln, Journal für die reine und angewandte Mathematik 10 (1844), 68–96.CrossRefGoogle Scholar
  11. 11.
    Paul C. Kocher, Timing attacks on implementations of Diffie-Hellman, RSA, DSS, and other systems, Advances in Cryptology-CRYPTO’ 96 (N. Koblitz, ed.), Lecture Notes in Computer Science, vol. 1109, Springer-Verlag, 1996, pp. 104–113.Google Scholar
  12. 12.
    Paul Kocher, Joshua Jaffe, and Benjamin Jun, Differential power analysis, Advances in Cryptology-CRYPTO’ 99 (M. Wiener, ed.), Lecture Notes in Computer Science, vol. 1666, Springer-Verlag, 1999, pp. 388–397.Google Scholar
  13. 13.
    Pierre-Yvan Liardet and Nigel P. Smart, Preventing SPA/DPA in ECC systems using the Jacobi form, these proceedings.Google Scholar
  14. 14.
    Thomas S. Messerges, Ezzy A. Dabbish, and Robert H. Sloan, Power analysis attacks of modular exponentiation in smartcards, Cryptographic Hardware and Embedded Systems (CHES’99) (Ç.K. Koç and C. Paar, eds.), Lecture Notes in Computer Science, vol. 1717, Springer-Verlag, 1999, pp. 144–157.CrossRefGoogle Scholar
  15. 15.
    Nigel P. Smart, The Hessian form of an elliptic curve, these proceedings.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2001

Authors and Affiliations

  • Marc Joye
    • 1
  • Jean-Jacques Quisquater
    • 2
  1. 1.Card Security GroupGemplus Card InternationalGémenosFrance
  2. 2.UCL Crypto GroupUniversité catholique de LouvainLouvain-la-NeuveBelgium

Personalised recommendations