Advertisement

Bitslice Ciphers and Power Analysis Attacks

  • Joan Daemen
  • Michael Peeters
  • Gilles Van Assche
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 1978)

Abstract

In this paper, we present techniques to protect bitslice block ciphers against power analysis attacks. We analyze and extend a technique proposed in [12]. We apply the technique to BaseKing, a variant of 3-Way[9] that was published in [7]. We introduce an alternative method to protect against power analysis specific for BaseKing. Finally, we discuss the applicability of the methods to the other known bitslice ciphers 3-Way and Serpent [1].

Keywords

Secret Sharing Block Cipher State Word Linear Cryptanalysis Bias Vector 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    E. Biham, R. Anderson, and L. Knudsen. Aes proposal serpent. AES CD-1: documentation, 1998.Google Scholar
  2. 2.
    E. Biham and A. Shamir. Differential cryptanalysis of des-like cryptosystems. Journal of Cryptology, 4(1):3–72, 1991.MATHCrossRefMathSciNetGoogle Scholar
  3. 3.
    E. Biham and A. Shamir. Power analysis of the key scheduling of the aes candidates. In 2nd AES Candidates Conference, March 1999.Google Scholar
  4. 4.
    S. Chari, C. Jutla, J. Rao, and P. Rohatgi. A cautionary note regarding evaluation of aes candidates on smart-cards. In Proceedings of the 2nd AES Candidates Conference, March 1999.Google Scholar
  5. 5.
    S. Chari, C. Jutla, J. Rao, and P. Rohatgi. Towards sound approaches to counteract power-analysis attacks. In Advances in Cryptology-CRYPTO'99, pages 398–412. Springer-Verlag, 1999.Google Scholar
  6. 6.
    T. M. Cover and J. A. Thomas. Elements of Information Theory. John Wiley & Sons, 1991.Google Scholar
  7. 7.
    J. Daemen. Cipher and Hash Function Design. PhD thesis, Katholieke Universiteit Leuven, March 1995.Google Scholar
  8. 8.
    J. Daemen, R. Govaerts, and J. Vandewalle. Correlation matrices. In R. Anderson, editor, Fast Software Encryption, pages 275–285. Springer-Verlag, 1994.Google Scholar
  9. 9.
    J. Daemen, R. Govaerts, and J. Vandewalle. A new approach towards block cipher design. In R. Anderson, editor, Fast Software Encryption, pages 18–33. Springer-Verlag, 1994.Google Scholar
  10. 10.
    J. Daemen, R. Govaerts, and J. Vandewalle. Weak keys of idea. In Advances in Cryptology-CRYPTO’93, pages 224–231. Springer-Verlag, 1994.Google Scholar
  11. 11.
    D.W. Davies. Some regular properties of the des. In Advances in Cryptology-CRYPTO’82, pages 89–96. Plenum Press, 1983.Google Scholar
  12. 12.
    L. Goubin and J. Patarin. Des and differential power analysis. In CHES’99, volume 1717, pages 158–172. Springer-Verlag, 1999.Google Scholar
  13. 13.
    J. Kelsey, B. Schneier, and D. Wagner. Key-schedule cryptanalysis of idea, g-des, gost, safer and triple-des. In Advances in Cryptology-CRYPTO’ 96, page 237. Springer-Verlag, 1996.Google Scholar
  14. 14.
    P. Kocher, J. Jaffe, and B. Jun. Introduction to differential power analysis and related attacks. The article can be found at http://www.cryptography.com/dpa/technical/index.html, 1998.
  15. 15.
    M. Matsui. Linear cryptanalysis method for des cipher. In Advances in Cryptology-EUROCRYPT’93, page 386. Springer-Verlag, 1993.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2001

Authors and Affiliations

  • Joan Daemen
    • 1
  • Michael Peeters
    • 1
  • Gilles Van Assche
    • 1
  1. 1.Proton World Intl.BrusselBelgium

Personalised recommendations