Advertisement

Managing Web Data through Views

  • Álisson R. Arantes
  • Alberto H. F. Laender
  • Paulo B. Golgher
  • Altigran S. da Silva
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 2115)

Abstract

The huge amount of data available on the Web creates a great demand for methods and tools that allow the manipulation of such data. Thus, the notion of view as a mechanism for providing access to Web data has been revisited. In this paper, we present an environment composed of a set of high-level tools that allow the fetching, extraction, integration, and refreshing of Web data. Using this environment, database designers can build and maintain Web views by defining schemas for data integration, specifying wrappers (agents for collecting Web pages and extracting data from them), and defining plans for refreshing the view contents.

Keywords

Primary Data Source Materialization Approach Semistructured Data Movie Title Semistructured Data Modeling 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Abiteboul, S., Buneman, P., AND Suciu, D.Data on the Web: From Relations to Semistructured Data and XML. Morgan Kaufmann Publishers, Los Altos, California, 1999.Google Scholar
  2. 2.
    Ambite, J. L., Ashish, N., Barish, G., Knoblock, C. A., Minton, S., Modi, P. J., Muslea, I., Philpot, A., AND Tejada, S. ARIADNE: A System for Constructing Mediators for Internet Sources. In Proceedings of the ACM SIGMOD International Conference on Management of Data (Seattle, Washington, 1998), pp. 561–563.Google Scholar
  3. 3.
    Bhowmick, S. S., Ng, W. K., AND Lim, E. P. Information Coupling in Web Databases. In Conceptual Modeling-ER’ 98, 17th International Conference on Conceptual Modeling, T. W. Ling, S. Ram, and M.-L. Lee, Eds. Springer, Berlin, Germany, 1998, pp. 92–106.Google Scholar
  4. 4.
    Cohen, W. W. Integration of Heterogeneous Databases Without Common Domains Using Queries Based on Textual Similarity. In Proceedings of the ACM SIGMOD International Conference on Management of Data (Seattle, Washington, June 1998), pp. 201–212.Google Scholar
  5. 5.
    Embley, D. W., Campbell, D. M., Jiang, Y. S., Liddle, S. W., Ng, Y. K., Quass, D., AND Smith, R. D. Conceptual-Model-Based Data Extraction from Multiple-Record Web Pages. Data & Knowledge Engineering 31,3, 227–25.Google Scholar
  6. 6.
    Garcia-Molina, H., Hammer, J., Ireland, K., Papakonstantinou, Y., Ullman, J., AND Widom, J. Integrating and Accessing Heterogeneous Information Sources in TSIMMIS. In Proceedings of the AAAI Spring Symposium on Information Gathering, Stanford, California (March 1995), pp. 61–64.Google Scholar
  7. 7.
    Golgher, P. B., Laender, A. H. F., Dda SILVA, A. S., AND Ribeiro-Neto, B. An Example-Based Enviroment for Wrapper Generation. In tiConceptual Modeling for E-Business and the Web, ER 2000 Workshops on Conceptual Modeling Approaches for E-Business and The World Wide Web and Conceptual Modeling S. Liddle, H. Mayr, and B. Thalheim, Eds., Springer, Berlin, Germany, 2000, pp. 94–101.Google Scholar
  8. 8.
    Gupta, A., Harinarayan, V., AND Rajaraman, A. Virtual Database Technology. In Proceedings of the Fourteenth International Conference on Data Engineering, February 23–27, 1998, Orlando, Florida (1998), pp. 297–301.Google Scholar
  9. 9.
    Laender, A. H. F., Ribeiro-Neto, B., Da Silva, A. S., AND Silva, E. S. Representing Web Data as Complex Objects. In Electronic Commerce and Web Technologies, First International Conference EC-Web 2000, K. Bauknecht, S. K. Mandria, and G. Pernul, Eds. Springer, Berlin, Germany, 2000, pp. 216–228.Google Scholar
  10. 10.
    Mecca, G., Atzeni, P., Masci, A., Merialdo, P., AND Sindoni, G. The ARANEUS Web-Base Management System. In Proceedings of the ACM SIGMOD International Conference on Management of Data (Seattle, Washington, June 1998), pp. 544–546.Google Scholar
  11. 11.
    Ribeiro-Neto, B., Laender, A. H. F., and da Silva, A. S. Extracting Semi-Structured Data Through Examples. In Proceedings of the Eighth ACM International Conference on Information and Knowledge Management-CIKM’99(Kansas City, Missouri, 1999), pp. 94–101.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2001

Authors and Affiliations

  • Álisson R. Arantes
    • 1
  • Alberto H. F. Laender
    • 1
  • Paulo B. Golgher
    • 1
    • 2
  • Altigran S. da Silva
    • 1
  1. 1.Computer Science DepartmentFederal University of Minas GeraisBelo HorizonteBrazil
  2. 2.Akwan Information TechnologiesBelo HorizonteBrazil

Personalised recommendations