Advertisement

Algorithms for Finding Gene Clusters

  • Steffen Heber
  • Jens Stoye
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 2149)

Abstract

Comparing gene orders in completely sequenced genomes is a standard approach to locate clusters of functionally associated genes. Often, gene orders are modeled as permutations. Given k permutations of n elements, a k-tuple of intervals of these permutations consisting of the same set of elements is called a common interval. We consider several problems related to common intervals in multiple genomes. We present an algorithm that finds all common intervals in a family of genomes, each of which might consist of several chromosomes. We present another algorithm that finds all common intervals in a family of circular permutations. A third algorithm finds all common intervals in signed permutations. We also investigate how to combine these approaches. All algorithms have optimal worst-case time complexity and use linear space.

Keywords

Gene Order Circular Chromosome Additional Space Active Interval Circular Permutation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    V. Bafna and P. Pevzner. Genome rearrangements and sorting by reversals. SIAM J. Computing, 25(2):272–289, 1996.zbMATHCrossRefMathSciNetGoogle Scholar
  2. 2.
    K. S. Booth and G. S. Lueker. Testing for the consecutive ones property, interval graphs and graph planarity using PQ-tree algorithms. J. Comput. Syst. Sci., 13(3):335–379, 1976.zbMATHMathSciNetGoogle Scholar
  3. 3.
    R. M. Brady. Optimization strategies gleaned from biological evolution. Nature, 317:804–806, 1985.CrossRefGoogle Scholar
  4. 4.
    T. Dandekar, B. Snel, M. Huynen, and P. Bork. Conservation of gene order: A fingerprint of proteins that physically interact. Trends Biochem. Sci., 23(9):324–328, 1998.CrossRefGoogle Scholar
  5. 5.
    J. A. Eisen. Horizontal gene transfer among microbial genomes: new insights from complete genome analysis. Curr. Opin. Genet. Dev., 10(6):606–611, 2000.CrossRefGoogle Scholar
  6. 6.
    W. Fujibuchi, H. Ogata, H. Matsuda, and M. Kanehisa. Automatic detection of conserved gene clusters in multiple genomes by graph comparison and P-quasi grouping. Nucleic Acids Res., 28(20):4029–4036, 2000.CrossRefGoogle Scholar
  7. 7.
    D. Fulkerson and O. Gross. Incidence matrices with the consecutive 1s property. Bull. Am. Math. Soc., 70:681–684, 1964.zbMATHMathSciNetCrossRefGoogle Scholar
  8. 8.
    M. C. Golumbic. Algorithmic Graph Theory and Perfect Graphs. Academic Press, New York, 1980.zbMATHGoogle Scholar
  9. 9.
    S. Hannenhalli and P. A. Pevzner. Transforming cabbage into turnip: Polynomial algorithm for sorting signed permutations by reversals. J. ACM, 46(1): 1–27, 1999.zbMATHCrossRefMathSciNetGoogle Scholar
  10. 10.
    S. Heber and J. Stoye. Finding all common intervals of k permutations. In Proceedings of the 12th Annual Symposium on Combinatorial Pattern Matching, CPM 2001, volume 2089 of Lecture Notes in Computer Science, pages 207–219. Springer Verlag, 2001. To appear.Google Scholar
  11. 11.
    M. A. Huynen and P. Bork. Measuring genome evolution. Proc. Natl. Acad. Sci. USA, 95(11):5849–5856, 1998.CrossRefGoogle Scholar
  12. 12.
    M. A. Huynen, B. Snel, and P. Bork. Inversions and the dynamics of eukaryotic gene order. Trends Genet., 17(6):304–306, 2001.CrossRefGoogle Scholar
  13. 13.
    H. Kaplan, R. Shamir, and R. E. Tarjan. A faster and simpler algorithm for sorting signed permutations by reversals. SIAM J. Computing, 29(3):880–892, 1999.CrossRefMathSciNetGoogle Scholar
  14. 14.
    J. D. Kececioglu and D. Sankoff. Efficient bounds for oriented chromosome inversion distance. In M. Crochemore and D. Gusfield, editors, Proceedings of the 5th Annual Symposium on Combinatorial Pattern Matching, CPM 94, volume 807 of Lecture Notes in Computer Science, pages 307–325. Springer Verlag, 1994.Google Scholar
  15. 15.
    S. Kobayashi, I. Ono, and M. Yamamura. An efficient genetic algorithm for job shop scheduling problems. In Proc. of the 6th International Conference on Genetic Algorithms, pages 506–511. Morgan Kaufmann, 1995.Google Scholar
  16. 16.
    W. C. III Lathe, B. Snel, and P. Bork. Gene context conservation of a higher order than operons. Trends Biochem. Sci., 25(10):474–479, 2000.CrossRefGoogle Scholar
  17. 17.
    E. M. Marcotte, M. Pellegrini, H. L. Ng, D. W. Rice, T. O. Yeates, and D. Eisenberg. Detecting protein function and protein-protein interactions from genome sequences. Science, 285:751–753, 1999.CrossRefGoogle Scholar
  18. 18.
    H. Mühlenbein, M. Gorges-Schleuter, and O. Krämer. Evolution algorithms in combinatorial optimization. Parallel Comput., 7:65–85, 1988.zbMATHCrossRefGoogle Scholar
  19. 19.
    A. R. Mushegian and E. V. Koonin. Gene order is not conserved in bacterial evolution. Trends Genet., 12(8):289–290, 1996.CrossRefGoogle Scholar
  20. 20.
    R. Overbeek, M. Fonstein, M. D’Souza, G. D. Pusch, and N. Maltsev. The use of gene clusters to infer functional coupling. Proc. Natl. Acad. Sci. USA, 96(6):2896–2901, 1999.CrossRefGoogle Scholar
  21. 21.
    P. A. Pevzner. Computational Molecular Biology: An Algorithmic Approach. MIT Press, Cambridge,MA, 2000.zbMATHGoogle Scholar
  22. 22.
    B. Snel, G. Lehmann, P. Bork, and M. A. Huynen. STRING: A web-server to retrieve and display the repeatedly occurring neigbourhood of a gene. Nucleic Acids Res., 28(18):3443–3444, 2000.CrossRefGoogle Scholar
  23. 23.
    J. Tamames, G. Casari, C. Ouzounis, and A. Valencia. Conserved clusters of functionally related genes in two bacterial genomes. J. Mol. Evol., 44(1):66–73, 1997.CrossRefGoogle Scholar
  24. 24.
    J. Tamames, M. Gonzalez-Moreno, J. Mingorance, A. Valencia, and M. Vicente. Bringing gene order into bacterial shape. Trends Genet., 17(3): 124–126, 2001.CrossRefGoogle Scholar
  25. 25.
    R. L. Tatusov, A. R. Mushegian, P. Bork, N.P. Brown, W. S. Hayes, M. Borodovsky, K.E. Rudd, and E. V Koonin. Metabolism and evolution of Haemophilus influenzae deduced from a whole-genome comparison with Escherichia coli. Curr. Biol., 6:279–291, 1996.CrossRefGoogle Scholar
  26. 26.
    T. Uno and M. Yagiura. Fast algorithms to enumerate all common intervals of two permutations. Algorithmica, 26(2):290–309, 2000.zbMATHCrossRefMathSciNetGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2001

Authors and Affiliations

  • Steffen Heber
    • 1
  • Jens Stoye
    • 2
  1. 1.Department of Computer Science & EngineeringUniversity of CaliforniaSan Diego
  2. 2.Max Planck Institute for Molecular GeneticsBerlinGermany

Personalised recommendations