Matching Polygonal Curves with Respect to the Fréchet Distance

  • Helmut Alt
  • Christian Knauer
  • Carola Wenk
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 2010)

Abstract

We provide the first algorithm for matching two polygonal curves P and Q under translations with respect to the Fréchet distance. If P and Q consist of m and n segments, respectively, the algorithm has runtime O((mn)3(m+n)2log(m+n)). We also present an algorithm giving an approximate solution as an alternative. To this end, we generalize the notion of a reference point and observe that all reference points for the Hausdorff distance are also reference points for the Fréchet distance. Furthermore we give a new reference point that is substantially better than all known reference points for the Hausdorff distance. These results yield a (1 + ∈)-approximation algorithm for the matching problem that has runtime O(∈-2mn).

Keywords

Computational geometry Shape matching Fréchet distance Parametric search Approximation algorithm Reference point Steiner point 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    O. Aichholzer, H. Alt, and G. Rote. Matching shapes with a reference point. Internat. J. Comput. Geom. Appl., 7:349–363, 1997.MATHCrossRefMathSciNetGoogle Scholar
  2. 2.
    H. Alt, B. Behrends, and J. Blömer. Approximate matching of polygonal shapes. Ann. Math. Artif. Intell., 13:251–266, 1995.MATHCrossRefGoogle Scholar
  3. 3.
    H. Alt, U. Fuchs, G. Rote, and G. Weber. Matching convex shapes with respect to the symmetric difference. Algorithmica, 21:89–103, 1998.MATHCrossRefMathSciNetGoogle Scholar
  4. 4.
    H. Alt and M. Godau. Computing the Fréchet distance between two polygonal curves. Internat. J. Comput. Geom. Appl., 5:75–91, 1995.MATHCrossRefMathSciNetGoogle Scholar
  5. 5.
    H. Alt and L. J. Guibas. Discrete geometric shapes: Matching, interpolation, and approximation. In J.-R. Sack and J. Urrutia, editors, Handbook of Computational Geometry, pages 121–153. Elsevier Science Publishers B.V. North-Holland, Amsterdam, 2000.CrossRefGoogle Scholar
  6. 6.
    R. Cole. Slowing down sorting networks to obtain faster sorting algorithms. Journal of the ACM, 34(1):200–208, 1987.CrossRefMathSciNetGoogle Scholar
  7. 7.
    A. Efrat, P. Indyk, and S. Venkatasubramanian. Pattern matching for sets of segments,September 2000. Manuscript, accepted to the 12th Symposium on Discrete Algorithms, 2001.Google Scholar
  8. 8.
    N. Megiddo. Applying parallel computation algorithms in the design of serial algorithms. J. ACM, 30(4):852–865, 1983.MATHCrossRefMathSciNetGoogle Scholar
  9. 9.
    S. Schirra. Über die Bitkomplexität der ∈-Kongruenz. Master’s thesis, Fachbereich Informatik, Universität des Saarlandes, 1988.Google Scholar
  10. 10.
    S. Venkatasubramanian. Geometric Shape Matching and Drug Design. PhD thesis, Department of Computer Science, Stanford University, August 1999.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2001

Authors and Affiliations

  • Helmut Alt
    • 1
  • Christian Knauer
    • 1
  • Carola Wenk
    • 1
  1. 1.Institut für InformatikFreie Universität BerlinBerlinGermany

Personalised recommendations