On the Circuit Complexity of Random Generation Problems for Regular and Context-Free Languages

  • Massimiliano Goldwurm
  • Beatrice Palano
  • Massimo Santini
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 2010)

Abstract

We study the circuit complexity of generating at random a word of length n from a given language under uniform distribution. We prove that, for every language accepted in polynomial time by 1-NAuxPDA of polynomially bounded ambiguity, the problem is solvable by a logspace-uniform family of probabilistic boolean circuits of polynomial size and O(log2n) depth. Using a suitable notion of reducibility (similar to the NC1-reducibility), we also show the relationship between random generation problems for regular and context-free languages and classical computational complexity classes such as DIV, L and DET.

Keywords

Uniform random generation ambiguous context-free languages auxiliary pushdown automata circuit complexity 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    E. Allender, D. Bruschi, and G. Pighizzini. The complexity of computing maximal word functions. Computational Complexity, 3:368–391, 1993.MATHCrossRefMathSciNetGoogle Scholar
  2. [2]
    A. Bertoni, M. Goldwurm, and P. Massazza. Counting problems and algebraic formal power series in noncommuting variables. Information Processing Letters, 34(3):117–121, April 1990.MATHCrossRefMathSciNetGoogle Scholar
  3. [3]
    A. Bertoni, M. Goldwurm, and N. Sabadini. The complexity of computing the number of strings of given length in context-free languages. Theoretical Computer Science, 86(2):325–342, 1991.MATHCrossRefMathSciNetGoogle Scholar
  4. [4]
    A. Bertoni, M. Goldwurm, and M. Santini. Random generation and approximate counting of ambiguously described combinatorial structures. In Horst Reichel and Sophie Tison, editors, Proceedings of 17th Annual Symposium on Theoretical Aspects of Computer Science (STACS), number 1770 in Lecture Notes in Computer Science, pages 567–580. Springer, 2000.Google Scholar
  5. [5]
    F.-J. Brandenburg. On one-way auxiliary pushdown automata. In H. Waldschmidt H. Tzschach and H. K.-G. Walter, editors, Proceedings of the 3rd GI Conference on Theoretical Computer Science, volume 48 of Lecture Notes in Computer Science, pages 132–144, Darmstadt, FRG, March 1977. Springer.Google Scholar
  6. [6]
    S. A. Cook. Characterizations of pushdown machines in terms of time-bounded computers. Journal of the ACM, 18(1):4–18, January 1971.MATHCrossRefGoogle Scholar
  7. [7]
    S. A. Cook. A taxonomy of problems with fast parallel algorithms. Information and Control, 64:2–22, 1985.MATHCrossRefMathSciNetGoogle Scholar
  8. [8]
    S. A. Cook and P. McKenzie. Problems complete for deterministic logarithmic space. Journal of Algorithms, 8(3):385–394, September 1987.MATHCrossRefMathSciNetGoogle Scholar
  9. [9]
    A. Denise. Génération aléatoire et uniforme de mots de langages rationnels. Theoretical Computer Science, 159(1):43–63, 1996.MATHCrossRefMathSciNetGoogle Scholar
  10. [10]
    P. Flajolet, P. Zimmerman, and B. Van Cutsem. A calculus for the random generation of labelled combinatorial structures. Theoretical Computer Science, 132(1-2):1–35, 1994.MATHCrossRefMathSciNetGoogle Scholar
  11. [11]
    V. Gore, M. Jerrum, S. Kannan, Z. Sweedyk, and S. Mahaney. A quasi-polynomial-time algorithm for sampling words from a context-free language. Information and Computation, 134(1):59–74, 10 April 1997.MATHCrossRefMathSciNetGoogle Scholar
  12. [12]
    T. Hickey and J. Cohen. Uniform random generation of strings in a context-free language. SIAM Journal on Computing, 12(4):645–655, November 1983.MATHCrossRefMathSciNetGoogle Scholar
  13. [13]
    M. Jerrum and A. Sinclair. Approximate counting, uniform generation and rapidly mixing markov chains. Information and Computation, 82:93–133, 1989.MATHCrossRefMathSciNetGoogle Scholar
  14. [14]
    M. R. Jerrum, L. G. Valiant, and V. V. Vazirani. Random generation of combinatorial structures from a uniform distribution. Theoretical Computer Science, 43(2-3):169–188, 1986.MATHCrossRefMathSciNetGoogle Scholar
  15. [15]
    R. M. Karp, M. Luby, and N. Madras. Monte-carlo approximation algorithms for enumeration problems. Journal of Algorithms, 10:429–448, 1989.MATHCrossRefMathSciNetGoogle Scholar
  16. [16]
    R. M. Karp and V. Ramachandran. Parallel algorithms for shared-memory machines. In J. van Leeuwen, editor, Handbook of Computer Science. MIT Press/Elsevier, 1992.Google Scholar
  17. [17]
    C. Lautemann. On pushdown and small tape. In K. Wagener, editor, Dirk-Siefkes, zum 50. Geburststag (proceedings of a meeting honoring Dirk Siefkes on his fiftieth birthday), pages 42–47. Technische Universität Berlin and Universität Ausgburg, 1988.Google Scholar
  18. [18]
    G. L. Miller, V. Ramachandran, and E. Kaltofen. Efficient parallel evaluation of straightline code and arithmetic circuits. SIAM Journal on Computing, 17(4):687–695, August 1988.MATHCrossRefMathSciNetGoogle Scholar
  19. [19]
    D. B. Searls. The computational linguistics of biological sequences. In Larry Hunter, editor, Artificial Intelligence and Molecular Biology, chapter 2, pages 47–120. AAAI Press, 1992.Google Scholar
  20. [20]
    R. Smith. A finite state machine algorithm for finding restriction sites and other pattern matching applications. Comput. Appl. Biosci., 4:459–465, 1988.Google Scholar
  21. [21]
    V. Vinay. Counting auxiliary pushdown automata and semi-unbounded arithmetic circuits. In Christopher Balcázar, José; Borodin, Alan; Gasarch, Bill; Immerman, Neil; Papadimitriou, Christos; Ruzzo, Walter; Vitányi, Paul; Wilson, editor, Proceedings of the 6th Annual Conference on Structure in Complexity Theory (SCTC’ 91), pages 270–284, Chicago, IL, USA, June 1991. IEEE Computer Society Press.Google Scholar
  22. [22]
    I. Wegener. The Complexity of Boolean Functions. B. G. Teubner, Stuttgart, 1987.MATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2001

Authors and Affiliations

  • Massimiliano Goldwurm
    • 1
  • Beatrice Palano
    • 2
  • Massimo Santini
    • 1
  1. 1.Dipartimento di Scienze dell’InformazioneUniversità degli Studi di MilanoMilanoItalia
  2. 2.Dipartimento di InformaticaUniversità degli Studi di TorinoTorinoItalia

Personalised recommendations