Residual Finite State Automata

  • François Denis
  • Aurélien Lemay
  • Alain Terlutte
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 2010)


We introduce a subclass of non deterministic finite automata (NFA) that we call Residual Finite State Automata (RFSA): a RFSA is a NFA all the states of which define residual languages of the language it recognizes. We prove that for every regular language L, there exists a unique RFSA that recognizes L and which has both a minimal number of states and a maximal number of transitions. Moreover, this canonical RFSA may be exponentially smaller than the equivalent minimal DFA but it also may have the same number of states as the equivalent minimal DFA, even if minimal equivalent NFA are exponentially smaller. We provide an algorithm that computes the canonical RFSA equivalent to a given NFA. We study the complexity of several decision and construction problems linked to the class of RFSA: most of them are PSPACE-complete.


Reduction Operator Regular Language Construction Problem Deterministic Finite Automaton Deterministic Automaton 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. ADN92.
    A. Arnold, A. Dicky and M. Nivat. A note about minimal non-deterministic automata. Bulletin of the EATCS, 47:166–169, June 1992.Google Scholar
  2. Brz62.
    J. A. Brzozowski. Canonical regular expressions and minimal state graphs for definite events. In Mathematical Theory of Automata, volume 12 of MRI Symposia Series, pages 52–561. 1962.Google Scholar
  3. Car70.
    C. Carrez. On the minimalization of non-deterministic automaton. Technical report, Laboratoire de Calcul de la Faculté des Sciences de l’Université de Lille, 1970.Google Scholar
  4. DLT00a.
    F. Denis, A. Lemay and A. Terlutte. Apprentissage de langages réguliers á l’aide d’automates non déterministes. In CAP’2000, 2000.Google Scholar
  5. DLT00b.
    F. Denis, A. Lemay and A. Terlutte. Residual finite state automata. Technical Report LIFL 2000-08, L.I.F.L., 2000.Google Scholar
  6. GJ79.
    Michael R. Garey and David S. Johnson. Computers and Intractability, a Guide to the Theory of NP-Completness. W.H. Freeman and Co, San Francisco, 1979.Google Scholar
  7. Gol78.
    E.M. Gold. Complexity of automaton identification from given data. Inform. Control, 37:302–320, 1978.zbMATHCrossRefMathSciNetGoogle Scholar
  8. Hig97.
    Colin De La Higuera. Characteristic sets for polynomial grammatical inference. Machine Learning, 27:125–137, 1997.zbMATHCrossRefGoogle Scholar
  9. HU79.
    J.E. Hopcroft and J.D. Ullman. Introduction to Automata Theory, Languages, and Computation. Addison-Wesley, 1979.Google Scholar
  10. Kle56.
    S. C. Kleene. Representation of events in nerve nets and finite automata. In C. Shannon and J. McCarthy, editors, Automata Studies, Annals of Math. Studies 34. New Jersey, 1956.Google Scholar
  11. Myh57.
    J. Myhill. Finite automata and the representation of events. Technical Report 57-624, WADC, 1957.Google Scholar
  12. Ner58.
    A. Nerode. Linear automaton transformation. In Proc. American Mathematical Society, volume 9, pages 541–544, 1958.zbMATHCrossRefMathSciNetGoogle Scholar
  13. OG92.
    J. Oncina and P. Garcia. Inferring regular languages in polynomial update time. In Pattern Recognition and Image Analysis, pages 49–61, 1992.Google Scholar
  14. Yu97.
    Sheng Yu. Handbook of Formal Languages, Regular Languages, volume 1, chapter 2, pages 41–110. 1997.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2001

Authors and Affiliations

  • François Denis
    • 1
  • Aurélien Lemay
    • 1
  • Alain Terlutte
    • 1
  1. 1.Bât. M3, GRAPPA-LIFLUniversité de Lille IVilleneuve d’Ascq CedexFrance

Personalised recommendations