Evasiveness of Subgraph Containment and Related Properties

  • Amit Chakrabarti
  • Subhash Khot
  • Yaoyun Shi
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 2010)

Abstract

We prove new results on evasiveness of monotone graph properties by extending the techniques of Kahn, Saks and Sturtevant [4]. For the property of containing a subgraph isomorphic to a fixed graph, and a fairly large class of related n-vertex graph properties, we show evasiveness for an arithmetic progression of values of n. This implies a 1/2n2 - O(n) lower bound on the decision tree complexity of these properties.

We prove that properties that are preserved under taking graph minors are evasive for all sufficiently large n. This greatly generalizes the evasiveness result for planarity [1]. We prove a similar result for bipartite subgraph containment.

Keywords

Decision Tree Complexity Monotone Graph Properties Evasiveness Graph Property Testing 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Best, M. R., van Emde Boas, P., Lenstra, H. W., Jr. A sharpened version of the Aanderaa-Rosenberg Conjecture, Report ZW 30/74, Mathematisch Centrum Amsterdam, 1974.Google Scholar
  2. 2.
    Bollobás, B. Complete subgraphs are elusive, J. Combinatorial Th. (B), 21 (1976), 1–7.MATHCrossRefGoogle Scholar
  3. 3.
    Bollobás, B. Extremal Graph Theory, Academic Press, 1978, Chapter 8.Google Scholar
  4. 4.
    Kahn, J., Saks, M., Sturtevant, D. A topological approach to evasiveness, Combinatorica, 4 (1984), 297–306.MATHCrossRefMathSciNetGoogle Scholar
  5. 5.
    Milner, E. C., Welsh, D. J. A. On the computational complexity of graph theoretical properties, Proc. 5th British Columbia Conf. on Combinatorics (C. St. J. A. Nash-Williams and J. Sheehan, Eds.), 1975, 471–487.Google Scholar
  6. 6.
    Rivest, R. L., Vuillemin, J. On recognizing graph properties from adjacency matrices, Theoret. Comput. Sci., 3 (1976), 371–384.CrossRefMathSciNetGoogle Scholar
  7. 7.
    Rosenberg, A. L. On the time required to recognize properties of graphs: A problem, SIGACT News, 5 (1973), 15–16.CrossRefGoogle Scholar
  8. 8.
    Triesch, E. Some results on elusive graph properties, SIAM J. Comput., 23 (1994), 247–254.MATHCrossRefMathSciNetGoogle Scholar
  9. 9.
    Yao, A. C. Monotone bipartite graph properties are evasive, SIAM J. Comput., 17 (1988), 517–520.MATHCrossRefMathSciNetGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2001

Authors and Affiliations

  • Amit Chakrabarti
    • 1
  • Subhash Khot
    • 1
  • Yaoyun Shi
    • 1
  1. 1.Department of Computer SciencePrincetonUSA

Personalised recommendations