Recurrence in Infinite Words

Extended Abstract
  • Julien Cassaigne
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 2010)


We survey some results and problems related to the notion of recurrence for infinite words.


Return Time Symbolic Dynamic Continue Fraction Expansion Bratteli Diagram Infinite Word 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    J.-P. Allouche and M. Bousquet-Mélou, On the conjectures of Rauzy and Shallit for infinite words, Comment. Math. Univ. Carolinae 36 (1995), 705–711.zbMATHGoogle Scholar
  2. 2.
    J.-P. Allouche, J.L. Davison, M. Queffélec, and L. Q. Zamboni, Transcendence of Sturmian or morphic continued fractions. Preprint.Google Scholar
  3. 3.
    J. Cassaigne, Special factors of sequences with linear subword complexity, in Developments in Language Theory II, pp. 25–34, World Scientific, 1996.Google Scholar
  4. 4.
    J. Cassaigne, Facteurs spéciaux et complexité, Bull. Belg. Math. Soc. 4 (1997), 67–88.zbMATHMathSciNetGoogle Scholar
  5. 5.
    J. Cassaigne, On a conjecture of J. Shallit, in ICALP’97, pp. 693–704, Lect. Notes Comput. Sci. 1256, Springer-Verlag, 1997.Google Scholar
  6. 6.
    J. Cassaigne, Sequences with grouped factors, in Developments in Language Theory III, pp. 211–222, Aristotle University of Thessaloniki, 1998.Google Scholar
  7. 7.
    J. Cassaigne, Limit values of the recurrence quotient of Sturmian sequences, Theoret. Comput. Sci. 218 (1999), 3–12.zbMATHCrossRefMathSciNetGoogle Scholar
  8. 8.
    N. Chekhova, Fonctions de récurrence des suites d’Arnoux-Rauzy et réponse á une question de Morse et Hedlund. Preprint.Google Scholar
  9. 9.
    F. Durand, A characterization of substitutive sequences using return words, Discrete Math. 179 (1998), 89–101.zbMATHCrossRefMathSciNetGoogle Scholar
  10. 10.
    F. Durand, Linearly recurrent subshifts, Research report 98-02, Institut de Mathématiques de Luminy, Marseille, France, 1998.Google Scholar
  11. 11.
    F. Durand, B. Host, and C. Skau, Substitutions, Bratteli diagrams and dimension groups, Ergod. Th. Dyn. Sys. 19 (1999), 952–993.MathSciNetGoogle Scholar
  12. 12.
    M. Lothaire, Algebraic combinatorics on words. To appear. Available online at
  13. 13.
    M. Morse and G. A. Hedlund, Symbolic dynamics, Amer. J. Math. 60 (1938), 815–866.zbMATHCrossRefMathSciNetGoogle Scholar
  14. 14.
    M. Morse and G. A. Hedlund, Symbolic dynamics II: Sturmian trajectories, Amer. J. Math. 61 (1940), 1–42.CrossRefMathSciNetGoogle Scholar
  15. 15.
    C. Pomerance, J. M. Robson, and J. Shallit, Automaticity II: Descriptional complexity in the unary case, Theoret. Comput. Sci. 180 (1997), 181–201.zbMATHCrossRefMathSciNetGoogle Scholar
  16. 16.
    G. Rauzy, Suites á termes dans un alphabet fini, Sém. Théor. Nombres Bordeaux, 1982-1983, 25.01–25. 16.Google Scholar
  17. 17.
    G. Rote, Sequences with subword complexity 2n, J. Number Theory 46 (1994), 196–213.zbMATHCrossRefMathSciNetGoogle Scholar
  18. 18.
    Z.-X. Wen and Z.-Y. Wen, Some properties of the singular words of the Fibonacci word, European J. Combin 15 (1994), 587–598.zbMATHCrossRefMathSciNetGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2001

Authors and Affiliations

  • Julien Cassaigne
    • 1
  1. 1.Institut de Mathématiques de LuminyMarseille Cedex 9France

Personalised recommendations