Edge-Based Robust Image Registration for Incomplete and Partly Erroneous Data

  • Piotr Gut
  • Leszek Chmielewski
  • Paweł Kukołowicz
  • Andrzej Dłbrowski
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 2124)

Abstract

In image registration it is vital to perform matching of those points in a pair of images which actually match each other, and to postpone those which do not match. It is not always known in advance, however, which points have their counterparts, and where are they located. To overcome this, we propose to use the Hausdorff distance function modified by using a voting scheme as a fitting quality function. This known function performs very well in guiding the matching process and supports stable matches even for low quality data. It also makes it possible to speed up the algorithms in various ways. An application to accuracy assessment of oncological radiotherapy is presented. Low contrast of images used to perform this task makes this application a challenging test.

Keywords

image restoration Hausdorff distance 

References

  1. 1.
    Aaltonen-Brahme, P., Brahme, A. et al.: Specification of dose delivery in radiation therapy. Acta Oncologica, 36(Supplementum 10) (1977)Google Scholar
  2. 2.
    Borgefors, G.: Distance transformations in digital images. Vision, Graph., and Image Proc. 34(3) (1986) 344–371CrossRefGoogle Scholar
  3. 3.
    Borgefors, G.: Hierarchical chamfer matching: A parametric edge matching algorithm. IEEE Trans. PAMI 10(6) (1988) 849–865Google Scholar
  4. 4.
    Gottesfeld Brown, L.: A survey of image registration techniques. ACM Computing Surveys 24(4) (1992) 325–376CrossRefGoogle Scholar
  5. 5.
    Cai, J., Chu, J.C.H., Saxena, A., Lanzl, L.H.: A simple algorithm for planar image registration in radiation therapy. Med. Phys. 25(6) (1998) 824–829CrossRefGoogle Scholar
  6. 6.
    Cai, J., Zhou, S-Q., Hopkinson, J., Saxena, A.V., Chu, J.: Alignment of multi-segmented anatomical features from radiation therapy images by using least squares fitting. Med. Phys. 23(13) (1996) 2069–2075CrossRefGoogle Scholar
  7. 7.
    Chetverikov, D., Khenokh, Y.: Matching for shape defect detection. Proc. Conf. Computer Analysis of Images and Patterns (CAIP’99, Ljubljana, Slovenia). Lecture Notes on Computer Science, vol. 1689. Springer Verlag (Sept 1999) 367–374Google Scholar
  8. 8.
    Danielsson, P.E.: Euclidean distance mapping. Graph. and Image Proc. 14 (1980) 227–248CrossRefGoogle Scholar
  9. 9.
    Eilertsen, K., Skretting, A., Tennvassas, T.L.: Methods for fully automated verification of patient set-up in external beam radiotherapy with polygon shaped fields. Phys. Med. Biol. 39 (1994) 993–1012CrossRefGoogle Scholar
  10. 10.
    Gilhuijs, K.G.A., El-Gayed, A.A.H., van Herk, M., Vijlbrief, R.E.: An algorithm for automatic analysis of portal images: clinical evaluation for prostate treatments. Radiotherapy and Oncology 29 (1993) 261–268CrossRefGoogle Scholar
  11. 11.
    Gilhuijs, K.G.A., van Herk, M.: Automatic on-line inspection of patient setup in radiation therapy using digital portal images. Med. Phys. 20(3) (1993) 667–677CrossRefGoogle Scholar
  12. 12.
    Giraud, L.M., Pouliot, J., Maldague, X., Zaccarin, A.: Automatic setup deviation measurements with electronic portal images for pelvic fields. Med. Phys. 25(7) (1998) 1180–1185CrossRefGoogle Scholar
  13. 13.
    Arrige, S.R., Lester, H.: A survey of hierarchical non-linear medical image registration. Pattern Recognition 32 (1999) 129–149CrossRefGoogle Scholar
  14. 14.
    Huttenlocher, D.P., Rucklidge, W.J.: A multi-resolution technique for comparing images using the Hausdorff distance. Proc. IEEE Conf. on Computer Vision and Pattern Recognition. New York (Jun 1993) 705–706Google Scholar
  15. 15.
    Kozińska, D., Tretiak, O.J., Nissanov, J., Oztruk, C.: Multidimensional alignment using the Euclidean distance transform. Graphical Models and Image Proc., 59(6) (1997) 373–387CrossRefGoogle Scholar
  16. 16.
    Mount, D.M., Netanyahu, N.S., Le Moigne, J.: Efficient algorithms for robust feature matching. Pattern Recognition 32 (1999) 17–38CrossRefGoogle Scholar
  17. 17.
    Rosenfeld, A., Pfaltz, J.: Distance functions on digital pictures. Pattern Recognition 1 (1968) 33–61CrossRefMathSciNetGoogle Scholar
  18. 18.
    Rucklidge, W.J.: Efficiently locating objects using the Hausdorff distance. Int. J. Comput. Vision 24(3) (1997) 251–270CrossRefGoogle Scholar
  19. 19.
    van Elsen, P.A., Pol, E.J.D., Viergever, M.A.: Medical image matching-a review with classification. ACM Computing Surveys 24(4) (1992) 325–376CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2001

Authors and Affiliations

  • Piotr Gut
    • 1
  • Leszek Chmielewski
    • 1
  • Paweł Kukołowicz
    • 2
  • Andrzej Dłbrowski
    • 2
  1. 1.Institute of Fundamental Technological Research, PASWarsaw
  2. 2.Holycross Cancer CentreKielce

Personalised recommendations