Advertisement

Dynamic Maintenance Versus Swapping: An Experimental Study on Shortest Paths Trees

  • Guido Proietti
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 1982)

Abstract

Given a spanning tree T of a 2-edge connected, weighted graph G, a swap edge for a failing edge e in T is an edge é of G reconnecting the two subtrees of T created bythe removal of e. A best swap edge is a swap edge enjoying the additional property of optimizing the swap, with respect to a given objective function. If the spanning tree is a single source shortest paths tree rooted in a node r, say S(r), it has been shown that there exist efficient algorithms for finding a best swap edge, for each edge e in S(r) and with respect to several objective functions. These algorithms are efficient both in terms of the functionalities of the trees obtained as a consequence of the swaps, and of the time spent to compute them. In this paper we propose an extensive experimental analysis of the above algorithms, showing that their actual behaviour is much better than what it was expected from the theoretical analysis.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    F. Chin and D. Houck, Algorithms for updating minimal spanning trees, J. Comput. System Sciences, 16(3) (1978) 333–344.zbMATHCrossRefMathSciNetGoogle Scholar
  2. 2.
    B. Dixon, M. Rauch and R.E. Tarjan, Verification and sensitivityanaly sis of minimum spanning trees in linear time, SIAM J. Comput., 21(6) (1992) 1184–1192.zbMATHCrossRefMathSciNetGoogle Scholar
  3. 3.
    M.L. Fredman and R.E. Tarjan, Fibonacci heaps and their uses in improved network optimization algorithms, J. of the ACM, 34(3) (1987) 596–615.CrossRefMathSciNetGoogle Scholar
  4. 4.
    D. Frigioni, A. Marchetti-Spaccamela and U. Nanni, Fullydy namic output bounded single source shortest path problem, Proc. 7th ACM-SIAM Symposium on Discrete Algorithms (SODA’96), 1996, 212–221.Google Scholar
  5. 5.
    D. Frigioni, M. Ioffreda, U. Nanni and G. Pasquale, Experimental analysis of dynamic algorithms for the single-source shortest-path problem, ACM J. of Experimental Algorithms, 3, article 5, (1998).Google Scholar
  6. 6.
    M. Grötschel, C.L. Monma and M. Stoer, Design of survivable networks, Handbooks in OR and MS, Vol. 7, Elsevier (1995) 617–672.CrossRefGoogle Scholar
  7. 7.
    F. Harary. Graph Theory. Addison-Wesley, Reading, MA, 1969.Google Scholar
  8. 8.
    R. Hassin and A. Tamir, On the minimum diameter spanning tree problem, Inf. Proc. Letters, 53 (1995) 109–111.zbMATHCrossRefMathSciNetGoogle Scholar
  9. 9.
    G.F. Italiano and R. Ramaswami, Maintaining spanning trees of small diameter, Algorithmica 22(3) (1998) 275–304.zbMATHCrossRefMathSciNetGoogle Scholar
  10. 10.
    K. Mehlhorn and S. Näher. LEDA: a platform for combinatorial and geometric computing. Cambridge UniversityPress, Cambridge, UK, 1999.zbMATHGoogle Scholar
  11. 11.
    E. Nardelli, G. Proietti and P. Widmayer, Finding all the best swaps of a minimum diameter spanning tree under transient edge failures, 6th European Symp. on Algorithms (ESA’98), Springer-Verlag, LNCS 1461, 55–66, 1998.Google Scholar
  12. 12.
    E. Nardelli, G. Proietti and P. Widmayer, How to swap a failing edge of a single source shortest paths tree, 5th Annual Int. Computing and Combinatorics Conf. (COCOON’99), Springer-Verlag, LNCS 1627, 144–153, 1999.Google Scholar
  13. 13.
    G. Ramalingam and T. Reps, An incremental algorithm for a generalization of the shortest path problem, J. of Algorithms, 21 (1996) 267–305.zbMATHCrossRefMathSciNetGoogle Scholar
  14. 14.
    R.E. Tarjan, Efficiencyof a good but not linear set union algorithm, J. of the ACM, 22(2) (1975) 215–225.zbMATHCrossRefMathSciNetGoogle Scholar
  15. 15.
    R.E. Tarjan, Sensitivityanaly sis of minimum spanning trees and shortest path trees, Inf. Proc. Letters, 14(1) (1982) 30–33.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2001

Authors and Affiliations

  • Guido Proietti
    • 1
    • 2
  1. 1.Dipartimento di Matematica Pura ed ApplicataUniversità di L’AquilaL’AquilaItaly
  2. 2.Istituto di Analisi dei Sistemi ed InformaticaConsiglio Nazionale delle RicercheRomaItaly

Personalised recommendations