Finding Correlative Associations among News Topics

  • Manuel Montes-y-Gómez
  • Aurelio López-López
  • Alexander Gelbukh
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 2004)

Abstract

A method for finding real-world associations between news topics (as distinguished from apparent associations caused by the constant size of the newspaper) is described. This is important for studying society interests.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Allan, J., Papka, R., and Lavrenko, V. (1998), Proc. Fo the 21st. ACM-SIGIR International Conference on Research and Development in Information Retrieval, Australia, 1998.Google Scholar
  2. 2.
    García-Menier E., “Un Sistema para la Clasificación de Notas Periodisticas”, Memorias del Simposium Internacional de Computación CIC-98, México, D. F., 1998.Google Scholar
  3. 3.
    Hearst, M. (1999), “Untangling Text Data Mining”, Proc. of ACL.99: the 37th Annual Meeting of the Association for Computational Linguistics, University of Marylnd, 1999.Google Scholar
  4. 4.
    Montes-y-Gómez, M., A. López-López, A. Gelbukh (1999a). “Text Mining as a Social Thermometer”. In Proc. of the Workshop on Text Mining: Foundations, Techniques and Applications, IJCAI-99, Stockholm, Sweden, 1999.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2001

Authors and Affiliations

  • Manuel Montes-y-Gómez
    • 1
  • Aurelio López-López
    • 2
  • Alexander Gelbukh
    • 1
  1. 1.Center for Computing Research (CIC)National Polytechnic Institute (IPN)Mexico
  2. 2.INAOETonantzintlaMéxico

Personalised recommendations