Three Mechanisms of Parser Driving for Structure Disambiguation

  • Galicia-Haro Sofía N. 
  • Gelbukh Alexander 
  • Bolshakov Igor A. 
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 2004)

Abstract

Structural ambiguity is one of the most difficult problems in natural language processing. Two disambiguation mechanisms for unrestricted text analysis are commonly used: lexical knowledge and context considerations. Our parsing method includes three different mechanisms to reveal syntactic struc- tures and an additional voting module to obtain the most probable structures for a sentence. The developed tools do not require any tagging or syntactic marking of texts.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Collins, M.: Head-driven Statistical Models for Natural language parsing. Ph.D. thesis. University of Pennsylvania. (1999) http://xxx.lanl.gov/ find/cmp-lg/
  2. 2.
    Yuret, D.: Discovery of Linguistic Relations Using Lexical Attraction. Ph. D. thesis. Massachusetts Institute of Technology. (1998) http://xxx.lanl.gov/ find/cmplg/9805009
  3. 3.
    Galicia-Haro, S. N, A. Gelbukh, I.A. Bolshakov: Advanced Subcategorization Frames for Languages with Relaxed Word Order Constraints. Natural Language Processing VEXTAL. (1999) 101–110.Google Scholar
  4. 4.
    Gelbukh, A. F.: Lexical, syntactic, and referential disambiguation using a semantic network dictionary. Technical report. CIC, IPN (1998)Google Scholar
  5. 5.
    Mel’čuk, I.: Dependency Syntax: Theory and Practice. State University of New York Press (1988)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2001

Authors and Affiliations

  • Galicia-Haro Sofía N. 
    • 1
  • Gelbukh Alexander 
    • 1
  • Bolshakov Igor A. 
    • 1
  1. 1.Natural Language Processing Laboratory. Center for Computer ResearchNational Polytechnic InstituteMéxico DF

Personalised recommendations