Symbolic Computation of Maximal Probabilisti Reachability

  • Marta Kwiatkowska
  • Gethin Norman
  • Jeremy Sproston
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 2154)


We study the maximal reachability probability problem for infinite-state systems featuring both nondeterministic and probabilistic choice. The problem involves the computation of the maximal probability of reaching a given set of states, and underlies decision procedures for the automatic verification of probabilistic systems. We extend the framework of symbolic transition systems, which equips an infinite-state system with an algebra of symbolic operators on its state space, with a symbolic encoding of probabilistic transitions to obtain a model for an infinite-state probabilistic system called a symbolic probabilistic system. An exact answer to the maximal reachability probability problem for symbolic probabilistic systems is obtained algorithmically via iteration of a refined version of the classical predecessor operation, combined with intersection operations. As in the non-probabilistic case, our state space exploration algorithm is semi-decidable for infinite-state systems. We illustrate our approach with examples of probabilistic timed automata, for which previous approaches to this reachability problem were either based on unnecessarily fine subdivisions of the state space, or which obtained only an upper bound on the exact reachability probability.


Model Check Transition Type Symbolic Computation Symbolic State Hybrid Automaton 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    P. A. Abdulla, K. Cerūans, B. Jonsson, and Y.-K. Tsay. General decidability theorems for infinite-state systems. In Proc. LICS’96, pages 313–321. IEEE Computer Society Press, 1996.Google Scholar
  2. 2.
    R. Alur, C. Courcoubetis, N. Halbwachs, T. A. Henzinger, P.-H. Ho, X. Nicollin, A. Olivero, J. Sifakis, and S. Yovine. The algorithmic analysis of hybrid systems. Theoretical Computer Science, 138(1):3–34, 1995.zbMATHCrossRefMathSciNetGoogle Scholar
  3. 3.
    R. Alur and D. L. Dill. A theory of timed automata. Theoretical Computer Science, 126(2):183–235, 1994.zbMATHCrossRefMathSciNetGoogle Scholar
  4. 4.
    C. Baier, B. Haverkort, H. Hermanns, and J.-P. Katoen. Model checking continuous-time Markov chains by transient analysis. In Proc. CAV 2000, volume 1855 of LNCS, pages 358–372. Springer, 2000.Google Scholar
  5. 5.
    C. Baier and M. Z. Kwiatkowska. Model checking for a probabilistic branching time logic with fairness. Distributed Computing, 11(3):125–155, 1998.CrossRefGoogle Scholar
  6. 6.
    A. Bianco and L. de Alfaro. Model checking of probabilistic and nondeterministic systems. In Proc. FSTTCS’95, volume 1026 of LNCS, pages 499–513. Springer, 1995.Google Scholar
  7. 7.
    J. Desharnais, V. Gupta, R. Jagadeesan, and P. Panangaden. Approximating labeled Markov processes. In Proc. LICS 2000, pages 95–106. IEEE Computer Society Press, 2000.Google Scholar
  8. 8.
    B. Haverkort. Performance of Computer Communication Systems: A Model-Based Approach. John Wiley and Sons, 1998.Google Scholar
  9. 9.
    M. R. Henzinger, T. A. Henzinger, and P. W. Kopke. Computing simulations on finite and infinite graphs. In Proc. FOCS’95, pages 453–462. IEEE Computer Society Press, 1995.Google Scholar
  10. 10.
    T. A. Henzinger, R. Majumdar, and J.-F. Raskin. A classification of symbolic transition systems, 2001. Preliminary version appeared in Proc. STACS 2000, volume 1770 of LNCS, pages 13–34, Springer, 2000.Google Scholar
  11. 11.
    T. A. Henzinger, X. Nicollin, J. Sifakis, and S. Yovine. Symbolic model checking for real-time systems. Information and Computation, 111(2):193–244, 1994.zbMATHCrossRefMathSciNetGoogle Scholar
  12. 12.
    P. Iyer and M. Narasimha. Probabilistic lossy channel systems. In Proc. TAP-SOFT’97, volume 1214 of LNCS, pages 667–681. Springer, 1997.CrossRefGoogle Scholar
  13. 13.
    J. G. Kemeny, J. L. Snell, and A. W. Knapp. Denumerable Markov Chains. Graduate Texts in Mathematics. Springer, 2nd edition, 1976.Google Scholar
  14. 14.
    M. Z. Kwiatkowska, G. Norman, R. Segala, and J. Sproston. Verifying quantitative properties of continuous probabilistic timed automata. In Proc. CONCUR 2000, volume 1877 of LNCS, pages 123–137. Springer, 2000.CrossRefGoogle Scholar
  15. 15.
    M. Z. Kwiatkowska, G. Norman, R. Segala, and J. Sproston. Automatic verification of real-time systems with discrete probability distributions. Theoretical Computer Science, 2001. Special issue on ARTS’99. To appear.Google Scholar
  16. 16.
    M. Z. Kwiatkowska, G. Norman, and J. Sproston. Symbolic computation of maximal probabilistic reachability. Technical Report CSR-01-5, School of Computer Science, University of Birmingham, 2001.Google Scholar
  17. 17.
    P. Pettersson and K. G. Larsen. Uppaal2k. Bulletin of the European Association for Theoretical Computer Science, 70:40–44, 2000.Google Scholar
  18. 18.
    J. Sproston. Decidable model checking of probabilistic hybrid automata. In Proc. FTRTFT 2000, volume 1926 of LNCS, pages 31–45. Springer, 2000.Google Scholar
  19. 19.
    J. Sproston. Model Checking of Probabilistic Timed and Hybrid Systems. PhD thesis, University of Birmingham, 2001.Google Scholar
  20. 20.
    M. I. A. Stoelinga and F. Vaandrager. Root contention in IEEE1394. In Proc. ARTS’99, volume 1601 of LNCS, pages 53–74. Springer, 1999.Google Scholar
  21. 21.
    M. Y. Vardi. Automatic verification of probabilistic concurrent finite-state programs. In Proc. FOCS’85, pages 327–338. IEEE Computer Society Press, 1985.Google Scholar
  22. 22.
    P. Wolper. Expressing interesting properties of programs in propositional temporal logic. In Proc. POPL’86, pages 184–193. ACM, 1986.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2001

Authors and Affiliations

  • Marta Kwiatkowska
    • 1
  • Gethin Norman
    • 1
  • Jeremy Sproston
    • 1
  1. 1.School of Computer ScienceUniversity of BirminghamBirminghamUK

Personalised recommendations