Advertisement

Rational Graphs Trace Context-Sensitive Languages

  • Christophe Morvan
  • Colin Stirling
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 2136)

Abstract

This paper shows that the traces of rational graphs coincide with the context-sensitive languages.

Keywords

Turing Machine Regular Language Transition Graph Rational Graph Complete Binary Tree 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Autebert, J.-M. and Boasson, L.Transductions rationelles. Masson, 1988.Google Scholar
  2. 2.
    Berstel, J.Transductions and contextfree languages. Teubner, 1979.Google Scholar
  3. 3.
    Moller, F. Burkart, O., Caucal, D. and Steffen B.Handbook of Process Algebra, chapter Verification on infinite structures, pages 545–623. Elsevier, 2001.Google Scholar
  4. 4.
    Caucal, D. On transition graphs having a decidable monadic theory. In Icalp 96, volume 1099 of LNCS, pages 194–205, 1996.Google Scholar
  5. 5.
    Courcelle, B.Handbook of Theoretical Computer Science, chapter Graph rewriting: an algebraic and logic approach. Elsevier, 1990.Google Scholar
  6. 6.
    Ginsburg, S. and Rose, G. F. Preservation of languages by transducers. Information and control, 9:153–176, 1966.MATHCrossRefMathSciNetGoogle Scholar
  7. 7.
    Knapik, T. and Payet, E. Synchronization product of linear bounded machines. In FCT, volume 1684 of LNCS, pages 362–373, 1999.Google Scholar
  8. 8.
    Mateescu, A., Salomaa, A.Handbook of Formal Languages, volume 1, chapter Aspects of classical language theory, pages 175–252. Springer-Verlag, 1997.Google Scholar
  9. 9.
    Morvan, C. On rational graphs. In Fossacs 00, volume 1784 of LNCS, pages 252–266, 2000.Google Scholar
  10. 10.
    Muller, D. and Schupp, P. The theory of ends, pushdown automata, and secondorder logic. Theoretical Computer Science, 37:51–75, 1985.MATHCrossRefMathSciNetGoogle Scholar
  11. 11.
    Penttonen, M. One-sided and two-sided context in formal grammars. Information and Control, 25:371–392, 1974.CrossRefMATHMathSciNetGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2001

Authors and Affiliations

  • Christophe Morvan
    • 1
  • Colin Stirling
    • 2
  1. 1.IRISARennesFrance
  2. 2.Division of InformaticsUiversity of EdinburghUK

Personalised recommendations