Advertisement

Approximation Algorithms for Scheduling Independent Malleable Tasks

  • J. Blazewicz
  • M. Machowiak
  • G. Mounié
  • D. Trystram
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 2150)

Abstract

Malleable tasks consist in considering the tasks of a parallel program as large computational units that may be themselves parallelized. In this paper we investigate the problem of scheduling a set of n independent malleable tasks on a m processors system, starting from the continuous version of the problem.

Keywords

Approximation Algorithm Performance Guarantee Parallel Task Schedule Length Multiprocessor Task 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    J. B.lażewicz, M. Drabowski, J. Weglarz: Scheduling multiprocessor tasks to minimize schedule length, IEEE Transactions on Computers 35, 1986, 389–393.CrossRefGoogle Scholar
  2. 2.
    J. Du, J. Y.-T. Leung: Complexity of scheduling parallel tasks systems. SIAM Journal on Discrete Mathematics 2, 1989, 473–487.MATHCrossRefMathSciNetGoogle Scholar
  3. 3.
    R. L. Graham: Bounds for certain multiprocessing anomalies, Bell System Tech. J., 45, 1966, 1563–1581.Google Scholar
  4. 4.
    K. Jansen, L. Porkolab: Linear-Time Approximation Schemes for Scheduling Malleable Parallel Tasks, In Tenth Annual ACM-SIAM Symposium on Discrete Algorithms (soda99), ACM-SIAM, 1999, 490–498.Google Scholar
  5. 5.
    W. T. Ludwig: Algorithms for scheduling malleable and non-malleable parallel tasks, PhD thesis, University of Wisconsin-Madison, Department of Computer Sciences, 1995.Google Scholar
  6. 6.
    G. Mounié, C. Rapine, D. Trystram: Efficient approximation algorithms for scheduling malleable tasks, In Eleventh ACM Symposium on Parallel Algorithms and Architectures (SPAA’ 99), ACM, 1999, 23–32.Google Scholar
  7. 7.
    G. N. S. Prasanna, B. R. Musicus: The optimal control approach to generalized multiprocessor scheduling, Algorithmica, 1995.Google Scholar
  8. 8.
    A. Steinberg: A Strip-Packing Algorithm with Absolute Performance Bound 2, SI AM Journal on Computing 26(2), 1997, 401–409.MATHCrossRefMathSciNetGoogle Scholar
  9. 9.
    J. Turek, J. Wolf, P. Yu: Approximate algorithms for scheduling parallelizable tasks, In 4th Annual ACM Symposium on Parallel Algorithms and Architectures, 1992, 323–332.Google Scholar
  10. 10.
    J. Weglarz: Modelling and control of dynamic resource allocation project scheduling systems, In S. G. Tzafestas (ed.), Optimization and Control of Dynamic Operational Research Models, North-Holland, Amsterdam, 1982.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2001

Authors and Affiliations

  • J. Blazewicz
    • 1
    • 2
  • M. Machowiak
    • 1
  • G. Mounié
    • 2
  • D. Trystram
    • 2
  1. 1.Instytut Informatyki Politechnika PoznanskaPoznanPoland
  2. 2.ID-IMAGMontbonnot Saint MartinFrance

Personalised recommendations