Advertisement

Group-Based Performance Analysis for Multithreaded SMP Cluster Applications

  • Holger Brunst
  • Wolfgang E. Nagel
  • Hans-Christian Hoppe
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 2150)

Abstract

Performance optimization remains one of the key issues in parallel computing. With the emergence of large clustered SMP systems, the task of analyzing and tuning scientific applications actually becomes harder. Tools need to be extended to cover both distributed and shared-memory styles of performance analysis and to handle the massive amount of information generated by applications on today’s powerful systems. This paper proposes a flexible way to define hierarchies of event streams and to enable the end-user to traverse these hierarchies, looking at sampled or aggregated information on the higher levels. The concept will be implemented and evaluated in practice within the scope of the US DOE ASCI project.

Keywords

performance visualization application tuning massively parallel programming scalability message passing multi-threading 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    L. DeRose and D. A. Reed. SvPablo: A Multi-Language Architecture-Independent Performance Analysis System. In Proceedings of the International Conference on Parallel Processing (ICPP’99), Fukushima, Japan, September 1999.Google Scholar
  2. 2.
    M. T. Heath, A. D. Malony, and D. T. Rover. Visualization for parallel performance evaluation and optimization. In I. J. Stasko, J. Domingue, M. H. Brown, and B.A. Price, editors, Software Visualization, pages 347–365. MIT Press, Cambridge, 1998.Google Scholar
  3. 3.
    J. Labarta, S. Girona, V. Pillet, T. Cortés, and L. Gregoris. DiP: A Parallel Program Development Environment. In 2nd International EuroPar Conference (EuroPar 96), Lyon, France, August 1996. http://www.cepba.upc.es/paraver.
  4. 4.
    B. P. Miller, M. D. Callaghan, J. M. Cargille, J. K. Hollingsworth, R. B. Irvin, K. L. Karavanic, K. Kunchithapadam, and T. Newhall. The Paradyn Parallel Performance Measurement Tools. IEEE Computer, 28(11):37–46, November 1995. http://www.cs.wisc.edu/~paradyn.
  5. 5.
    W. E. Nagel, A. Arnold, M. Weber, H.-C. Hoppe, and K. Solchenbach. VAMPIR: Visualization and Analysis of MPI Resources. Supercomputer 63, XII(1):69–80, January 1996. http://www.pallas.de/pages/vampir.htm.
  6. 6.
    Pointers to tools, modules, APIs and documents related to parallel performance analysis. http://www.fz-juelich.de/apart/wp3/modmain.html.
  7. 7.
    J. C. Yan. Performance Tuning with AIMS-An Automated Instrumentation and Monitoring System for Multicomputers. In Proceedings of the 27th Hawaii International Conference on System Sciences, volume II, pages 625–633, Wailea, Hawaii, January 1994. http://www.nas.nasa.gov/Groups/Tools/Projects/AIMS.

Copyright information

© Springer-Verlag Berlin Heidelberg 2001

Authors and Affiliations

  • Holger Brunst
    • 1
  • Wolfgang E. Nagel
    • 1
  • Hans-Christian Hoppe
    • 2
  1. 1.ZHRDresden University of TechnologyGermany
  2. 2.Pallas GmbHGermany

Personalised recommendations