Graph Separators: A Parameterized View

  • Jochen Alber
  • Henning Fernau
  • Rolf Niedermeier
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 2108)


Graph separation is a well-known tool to make (hard) graph problems accessible for a divide and conquer approach. We show how to use graph separator theorems in order to develop fixed parameter algorithms for many well-known NP-hard (planar) graph problems. We coin the key notion of glueable select&verify graph problems and derive from that a prospective way to easily check whether a planar graph problem will allow for a fixed parameter divide and conquer algorithm of running time c \( ^{\sqrt k } \) · n O(1) for a constant c.


Planar Graph Vertex Cover Graph Class Separator Theorem Graph Problem 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    J. Alber, H.L. Bodlaender, H. Fernau, and R. Niedermeier Fixed parameter algorithms for planar dominating set and related problems. In Proc. 7th SWAT, vol. 1851 of LNCS, Springer, pp. 97–110, 2000.Google Scholar
  2. 2.
    J. Alber, H. Fernau, and R. Niedermeier Parameterized complexity: exponential speed-up for planar graph problems. Technical Report TR01-023, ECCC Reports, Trier, March 2001. Extended abstract in Proc. 28th ICALP, Springer, 2001.Google Scholar
  3. 3.
    L. Cai and D. Juedes Subexponential parameterized algorithms collapse the Whierarchy. In Proc. 28th ICALP, Springer, 2001.Google Scholar
  4. 4.
    J. Chen, I. Kanj, and W. Jia Vertex cover: Further observations and further improvements. In Proc. 25th WG, vol. 1665 of LNCS, Springer, pp. 313–324, 1999.Google Scholar
  5. 5.
    H.N. Djidjev A separator theorem for graphs of fixed genus. Serdica, 11:319–329, 1985.zbMATHMathSciNetGoogle Scholar
  6. 6.
    H.N. Djidjev and S. Venkatesan Reduced constants for simple cycle graph separation. Acta Informatica, 34:231–243, 1997.CrossRefMathSciNetGoogle Scholar
  7. 7.
    R.G. Downey and M.R. Fellows Parameterized Complexity. Springer, 1999.Google Scholar
  8. 8.
    R.J. Lipton and R.E. Tarjan A separator theorem for planar graphs. SIAM J. Appl. Math., 36:177–189, 1979.zbMATHCrossRefMathSciNetGoogle Scholar
  9. 9.
    R.J. Lipton and R.E. Tarjan Applications of a planar separator theorem. SIAM J. Comput., 9(3):615–627, 1980.zbMATHCrossRefMathSciNetGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2001

Authors and Affiliations

  • Jochen Alber
    • 1
  • Henning Fernau
    • 1
  • Rolf Niedermeier
    • 1
  1. 1.Wilhelm-Schickard-Institut für InformatikUniversität TübingenTübingenFed. Rep. of Germany

Personalised recommendations