Advertisement

A Linear Time Algorithm for Enumerating All the Minimum and Minimal Separators of a Chordal Graph

  • L. Sunil Chandran
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 2108)

Abstract

We give O(m+ n) algorithms for enumerating all minimum separators as well as minimal separators in a connected chordal graph. We give a tight upper bound, n - κ(G) - 1, for the number of minimal separators in a chordal graph. An important contribution of the paper is our characterisation of minimal (minimum) separators of chordal graphs and the above results are obtained as consequences of the characterisations.

Keywords

Chordal Graph Linear Time Algorithm Interior Node Minimal Separator Interior Vertex 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    H. Ariyoshi, Cut-set graph and systematic generation of separating sets. IEEE Transactions on circuit theory, CT-19 (1972) 233–240.MathSciNetCrossRefGoogle Scholar
  2. 2.
    G.A. Dirac, On rigid circuit graphs. Abh. Math. Sem. Univ. Hamburg, 25:71–76, 1961.MATHMathSciNetCrossRefGoogle Scholar
  3. 3.
    S. Even, R.E. Tarjan, Network Flow And Testing Graph Connectivity SIAM J. Comp. 4(4) 507–518, December 1975.MATHCrossRefMathSciNetGoogle Scholar
  4. 4.
    H.N. Gabow, Using Expander Graphs to Find Vertex Connectivity. Annual Symposium on Foundations of Computer Science, 2000.Google Scholar
  5. 5.
    L.A. Goldberg, Efficient Algorithms For Listing Combinatorial Structures. Cambridge University Press, Cambridge, 1993.MATHGoogle Scholar
  6. 6.
    M.C. Golumbic, Algorithmic Graph Theory And Perfect Graphs. Academic Press, New York, 1980.MATHGoogle Scholar
  7. 7.
    F. Harary, Graph Theory. Addison-Wesley Reading, MA, 1969.Google Scholar
  8. 8.
    Hong Shen and Weifa Liang, Efficient Enumeration Of All Minimal Separators In A Graph Theoretical Computer Science, 180(1-2) 169–180, 10 June 1997MATHCrossRefMathSciNetGoogle Scholar
  9. 9.
    A. Kanevsky, Finding All Minimum Size Separating VertexSets In Graphs. NETWORKS, 23 533–541,1993.MATHCrossRefMathSciNetGoogle Scholar
  10. 10.
    T. Kloks and D. Kratsch, Listing All Minimal Separators Of A Graph SIAM J. Comput. 27(3) 605–613 June 1998MATHCrossRefMathSciNetGoogle Scholar
  11. 11.
    T. Kloks, H. Bodlaender and D. Kratsch, Treewidth And Path Width Of Permutation Graphs SIAM J. Descrete Math. 8, 606–616, 1995.MATHCrossRefMathSciNetGoogle Scholar
  12. 12.
    T. Kloks, Treewidth-Computations And Approximations. Lecture Notes In Computer Science 842, Springer Verlag, Berlin 1994.MATHGoogle Scholar
  13. 13.
    T. Kloks, Treewidth Of Circle Graphs. Int. J. Of Foundations In Comp. Sci., 7 111–120, 1996.MATHCrossRefGoogle Scholar
  14. 14.
    T. Kloks and D. Kratsch, Treewidth Of Chordal Bipartite Graphsa. J. Algorithms, 19, 266–281 1995.MATHCrossRefMathSciNetGoogle Scholar
  15. 15.
    R.H. Mohring, Graph Problems Related To Gate MatrixL ayout And PLA Folding. Computational Graph Theory, Pages 17–52, Springer, Wein, New York,1990.Google Scholar
  16. 16.
    Monika R Henzinger, A Static 2-Approximation Algorithm For Vertex Connectivity And An Incremental Approximation Algorithm For Edge And Vertex Connectivity. J. of Algorithms 24(1) 194–220 July 1997MATHCrossRefMathSciNetGoogle Scholar
  17. 17.
    Monika R Henzinger, Satish Rao, and H.N. Gabow, Computing VertexConne ctivity: New Bounds From Old Techniques. 37th Anual Symposium On Foundations Of Computer Science, 462–471 Oct. 1996.Google Scholar
  18. 18.
    Samir Khuller and Baruch Schieber, k-Connectivity And Finding Disjoint s-t Paths In Graphs. SIAM J. Comp. 20(2) 352–375 April 1991MATHCrossRefMathSciNetGoogle Scholar
  19. 19.
    Shimon Even, An Algorithm For Determining Whether The Connectivity Of A Graph Is At Least k. SIAM J. Comp. 4(3) 393–396 September 1975.MATHCrossRefMathSciNetGoogle Scholar
  20. 20.
    M. Yannakakis, Computing The Minimum Fill-in Is NP-Complete SIAM J. on Alge. Discre. Math. 2 77–79, 1981.MATHCrossRefMathSciNetGoogle Scholar
  21. 21.
    M. Yannakakis and R.E. Tarjan, Simple Linear Time Algorithms To Test Chordality of Graphs, Test Acyclicity of hypergraphs and Selectively Reduce Acyclic Hypergraphs. SIAM J. Comput. 13,566–579, 1984MATHCrossRefMathSciNetGoogle Scholar
  22. 22.
    Zvi Galil, Finding The Vertex Connectivity Of Graphs. SIAM J. Compu. 9(1) 197–199 Feb 1980.MATHCrossRefMathSciNetGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2001

Authors and Affiliations

  • L. Sunil Chandran
    • 1
  1. 1.Dept. of Computer Science and AutomationIndian Institute of ScienceBangaloreIndia

Personalised recommendations