Exact and Approximate Distances in Graphs — A Survey

  • Uri Zwick
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 2161)

Abstract

W survey recent and not so recent results related to the computation of exact and approximate distances, and corresponding shortest, or almost shortest, paths in graphs. We consider many different settings and models and try to identify some remaining open problems.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    A.V. Aho, J.E. Hopcroft, and J.D. Ullman. The design and analysis of computer algorithms. Addison-Wesley, 1974.Google Scholar
  2. 2.
    R.K. Ahuja, K. Mehlhorn, J.B. Orlin, and R.E. Tarjan. Faster algorithms for the shortest path problem. Journal of the ACM, 37:213–223, 1990.MATHCrossRefMathSciNetGoogle Scholar
  3. 3.
    D. Aingworth, C. Chekuri, P. Indyk, and R. Motwani. Fast estimation of diameter and shortest paths (without matrix multiplication). SIAM Journal on Computing, 28:1167–1181, 1999.MATHCrossRefMathSciNetGoogle Scholar
  4. 4.
    N. Alon, Z. Galil, and O. Margalit. On the exponent of the all pairs shortest path problem. Journal of Computer and System Sciences, 54:255–262, 1997.MATHCrossRefMathSciNetGoogle Scholar
  5. 5.
    N. Alon, Z. Galil, O. Margalit, and M. Naor. Witnesses for boolean matrix multiplication and for shortest paths. In Proceedings of the 33rd Annual IEEE Symposium on Foundations of Computer Science, Pittsburgh, Pennsylvania, pages 417–426, 1992.Google Scholar
  6. 6.
    N. Alon and M. Naor. Derandomization, witnesses for Boolean matrix multiplication and construction of perfect hash functions. Algorithmica, 16:434–449, 1996.MATHCrossRefMathSciNetGoogle Scholar
  7. 7.
    I. Althöfer, G. Das, D. Dobkin, D. Joseph, and J. Soares. On sparse spanners of weighted graphs. Discrete & Computational Geometry, 9:81–100, 1993.MATHCrossRefMathSciNetGoogle Scholar
  8. 8.
    B. Awerbuch. Complexity of network synchronization. Journal of the ACM, 32:804–823, 1985.MATHCrossRefMathSciNetGoogle Scholar
  9. 9.
    B. Awerbuch, B. Berger, L. Cowen, and D. Peleg. Near-linear time construction of sparse neighborhood covers. SIAM Journal on Computing, 28:263–277, 1999.CrossRefMathSciNetGoogle Scholar
  10. 10.
    M. Ben-Or. Lower bounds for algebraic computation trees. In Proceedings of the 15th Annual ACM Symposium on Theory of Computing, Boston, Massachusetts, pages 80–86, 1983.Google Scholar
  11. 11.
    B.V. Cherkassky, A.V. Goldberg, and T. Radzik. Shortest paths algorithms: theory and experimental evaluation. Mathematical Programming (Series A), 73(2):129–174, 1996.CrossRefMathSciNetGoogle Scholar
  12. 12.
    B.V. Cherkassky, A.V. Goldberg, and C. Silverstein. Buckets, heaps, lists, and monotone priority queues. SIAM Journal on Computing, 28(4):1326–1346, 1999.MATHCrossRefMathSciNetGoogle Scholar
  13. 13.
    E. Cohen. Using selective path-doubling for parallel shortest-path computations. Journal of Algorithms, 22:30–56, 1997.MATHCrossRefMathSciNetGoogle Scholar
  14. 14.
    E. Cohen. Fast algorithms for constructing t-spanners and paths with stretch t. SIAM Journal on Computing, 28:210–236, 1999.CrossRefMathSciNetGoogle Scholar
  15. 15.
    E. Cohen. Polylog-time and near-linear work approximation scheme for undirected shortest paths. Journal of the ACM, 47(1):132–166, 2000.MATHCrossRefMathSciNetGoogle Scholar
  16. 16.
    E. Cohen and U. Zwick. All-pairs small-stretch paths. Journal of Algorithms, 38:335–353, 2001.MATHCrossRefMathSciNetGoogle Scholar
  17. 17.
    D. Coppersmith. Rectangular matrix multiplication revisited. Journal of Complexity, 13:42–49, 1997.MATHCrossRefMathSciNetGoogle Scholar
  18. 18.
    D. Coppersmith and S. Winograd. Matrix multiplication via arithmetic progressions. Journal of Symbolic Computation, 9:251–280, 1990.MATHMathSciNetCrossRefGoogle Scholar
  19. 19.
    T.H. Cormen, C.E. Leiserson, and R.L. Rivest. Introduction to algorithms. The MIT Press, 1990.Google Scholar
  20. 20.
    L.J. Cowen. Compact routing with minimum stretch. Journal of Algorithms, 38:170–183, 2001.MATHCrossRefMathSciNetGoogle Scholar
  21. 21.
    C. Demetrescu and G. F. Italiano. Fully dynamic transitive closure: breaking through the O(n 2) barrier. In Proceedings of the 41th Annual IEEE Symposium on Foundations of Computer Science, Redondo Beach, California, pages 381–389, 2000.Google Scholar
  22. 22.
    E.W. Dijkstra. A note on two problems in connexion with graphs. Numerische Mathematik, 1:269–271, 1959.MATHCrossRefMathSciNetGoogle Scholar
  23. 23.
    D. Dor, S. Halperin, and U. Zwick. All pairs almost shortest paths. SIAM Journal on Computing, 29:1740–1759, 2000.MATHCrossRefMathSciNetGoogle Scholar
  24. 24.
    J.R. Driscoll, H.N. Gabow, R. Shrairman, and R.E. Tarjan. Relaxed heaps: an alternative to Fibonacci heaps with applications to parallel computation. Communications of the ACM, 31(11):1343–1354, 1988.CrossRefMathSciNetGoogle Scholar
  25. 25.
    M.L. Elkin. Computing almost shortest paths. Technical Report MCS01-03, Faculty of Mathematics and Computer Science, The Weizmann Institute of Science, Rehovot, Israel, 2001.Google Scholar
  26. 26.
    M.L. Elkin and D. Peleg. (1 + ε,β)-Spanner constructions for general graphs. In Proceedings of the 33th Annual ACM Symposium on Theory of Computing, Crete, Greece, 2001. To appear.Google Scholar
  27. 27.
    M.L. Elkin and D. Peleg. Approximating k-spanner problems for k > 2. In Proceedings of the 8th Conference on Integer Programming and Combinatorial Optimization, Utrecht, The Netherlands, 2001. To appear.Google Scholar
  28. 28.
    D. Eppstein. Spanning trees and spanners. In Jörg-Rudiger Sack and Jorge Urrutia, editors, Handbook of Computational Geometry, chapter 9, pages 425–461. Elsevier, 2000.Google Scholar
  29. 29.
    M.L. Fredman. New bounds on the complexity of the shortest path problem. SIAM Journal on Computing, 5:49–60, 1976.CrossRefMathSciNetGoogle Scholar
  30. 30.
    M.L. Fredman and R.E. Tarjan. Fibonacci heaps and their uses in improved network optimization algorithms. Journal of the ACM, 34:596–615, 1987.CrossRefMathSciNetGoogle Scholar
  31. 31.
    M.L. Fredman and D.E. Willard. Surpassing the information-theoretic bound with fusion trees. Journal of Computer and System Sciences, 47(3):424–436, 1993.MATHCrossRefMathSciNetGoogle Scholar
  32. 32.
    M.L. Fredman and D.E. Willard. Trans-dichotomous algorithms for minimum spanning trees and shortest paths. Journal of Computer and System Sciences, 48:533–551, 1994.MATHCrossRefMathSciNetGoogle Scholar
  33. 33.
    H.N. Gabow. Scaling algorithms for network problems. Journal of Computer and System Sciences, 31(2):148–168, 1985.MATHCrossRefMathSciNetGoogle Scholar
  34. 34.
    H.N. Gabow and R.E. Tarjan. Faster scaling algorithms for network problems. SIAM Journal on Computing, 18:1013–1036, 1989.MATHCrossRefMathSciNetGoogle Scholar
  35. 35.
    Z. Galil and O. Margalit. Witnesses for boolean matrix multiplication. Journal of Complexity, 9:201–221, 1993.MATHCrossRefMathSciNetGoogle Scholar
  36. 36.
    Z. Galil and O. Margalit. All pairs shortest distances for graphs with small integer length edges. Information and Computation, 134:103–139, 1997.MATHCrossRefMathSciNetGoogle Scholar
  37. 37.
    Z. Galil and O. Margalit. All pairs shortest paths for graphs with small integer length edges. Journal of Computer and System Sciences, 54:243–254, 1997.MATHCrossRefMathSciNetGoogle Scholar
  38. 38.
    A.V. Goldberg. Scaling algorithms for the shortest paths problem. SIAM Journal on Computing, 24:494–504, 1995.MATHCrossRefMathSciNetGoogle Scholar
  39. 39.
    T. Hagerup. Sorting and searching on the word RAM. In Proceedings of the 15th Annual Symposium on Theoretical Aspects of Computer Science, Paris, France, pages 366–398, 1998.Google Scholar
  40. 40.
    T. Hagerup. Improved shortest paths on the word RAM. In Proceedings of the 27st International Colloquium on Automata, Languages and Programming, Geneva, Switzerland, pages 61–72, 2000.Google Scholar
  41. 41.
    S. Halperin and U. Zwick. Unpublished result, 1996.Google Scholar
  42. 42.
    Y. Han. Improved fast integer sorting in linear space. In Proceedings of the 12th Annual ACM-SIAM Symposium on Discrete Algorithms, Washington, D.C., pages 793–796, 2001.Google Scholar
  43. 43.
    M.R. Henzinger, P. Klein, S. Rao, and S. Subramanian. Faster shortest-path algorithms for planar graphs. Journal of Computer and System Sciences, 55:3–23, 1997.MATHCrossRefMathSciNetGoogle Scholar
  44. 44.
    X. Huang and V.Y. Pan. Fast rectangular matrix multiplications and applications. Journal of Complexity, 14:257–299, 1998.MATHCrossRefMathSciNetGoogle Scholar
  45. 45.
    D.B. Johnson. Efficient algorithms for shortest paths in sparse graphs. Journal of the ACM, 24:1–13, 1977.MATHCrossRefGoogle Scholar
  46. 46.
    D.R. Karger, D. Koller, and S.J. Phillips. Finding the hidden path: time bounds for all-pairs shortest paths. SIAM Journal on Computing, 22:1199–1217, 1993.MATHCrossRefMathSciNetGoogle Scholar
  47. 47.
    R.M. Karp. A characterization of the minimum cycle mean in a digraph. Discrete Mathematics, 23:309–311, 1978.MATHMathSciNetGoogle Scholar
  48. 48.
    V. King. Fully dynamic algorithms for maintaining all-pairs shortest paths and transitive closure in digraphs. In Proceedings of the 40th Annual IEEE Symposium on Foundations of Computer Science, New York, New York, pages 81–89, 1999.Google Scholar
  49. 49.
    P.N. Klein and S. Subramanian. A randomized parallel algorithm for single-source shortest paths. Journal of Algorithms, 25(2):205–220, 1997.MATHCrossRefMathSciNetGoogle Scholar
  50. 50.
    G. Kortsarz and D. Peleg. Generating sparse 2-spanners. Journal of Algorithms, 17(2):222–236, 1994.CrossRefMathSciNetGoogle Scholar
  51. 51.
    J.B. Kruskal. On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical Society, 7:48–50, 1956.CrossRefMathSciNetGoogle Scholar
  52. 52.
    C.C. McGeoch. All-pairs shortest paths and the essential subgraph. Algorithmica, 13:426–461, 1995.MATHCrossRefMathSciNetGoogle Scholar
  53. 53.
    K. Mehlhorn and Z. Galil. Monotone switching circuits and Boolean matrix product. Computing, 16(1–2):99–111, 1976.MATHCrossRefMathSciNetGoogle Scholar
  54. 54.
    J.S.B. Mitchell. Shortest paths and networks. In Jacob E. Goodman and Joseph O’ Rourke, editors, Handbook of Discrete and Computational Geometry, chapter 24, pages 445–466. CRC Press LLC, Boca Raton, FL, 1997.Google Scholar
  55. 55.
    J.S.B. Mitchell. Geometric shortest paths and network optimization. In Jörg-Rüdiger Sack and Jorge Urrutia, editors, Handbook of Computational Geometry, pages 633–701. Elsevier Science Publishers B.V. North-Holland, Amsterdam, 2000.CrossRefGoogle Scholar
  56. 56.
    M.S. Paterson. Complexity of monotone networks for Boolean matrix product. Theoretical Computer Science, 1(1):13–20, 1975.MATHCrossRefMathSciNetGoogle Scholar
  57. 57.
    D. Peleg. Distributed computing-A locality-s ensitive approach. Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA, 2000.Google Scholar
  58. 58.
    D. Peleg and A.A. Schäffer. Graph spanners. J. of Graph Theory, 13:99–116, 1989.MATHCrossRefGoogle Scholar
  59. 59.
    R. Raman. Priority queues: small, monotone and trans-dichotomous. In Proceedings of the 4nd European Symposium on Algorithms, Barcelona, Spain, pages 121–137, 1996.Google Scholar
  60. 60.
    R. Raman. Recent results on the single-source shortest paths problem. SIGACT News, 28:81–87, 1997.CrossRefGoogle Scholar
  61. 61.
    A. Schönhage and V. Strassen. Schnelle multiplikation grosser zahlen. Computing, 7:281–292, 1971.MATHCrossRefGoogle Scholar
  62. 62.
    R. Seidel. On the all-pairs-shortest-path problem in unweighted undirected graphs. Journal of Computer and System Sciences, 51:400–403, 1995.CrossRefMathSciNetGoogle Scholar
  63. 63.
    A. Shoshan and U. Zwick. All pairs shortest paths in undirected graphs with integer weights. In Proceedings of the 40th Annual IEEE Symposium on Foundations of Computer Science, New York, New York, pages 605–614, 1999.Google Scholar
  64. 64.
    V. Strassen. Gaussian elimination is not optimal. Numerische Mathematik, 13:354–356, 1969.MATHCrossRefMathSciNetGoogle Scholar
  65. 65.
    T. Takaoka. A new upper bound on the complexity of the all pairs shortest path problem. Information Processing Letters, 43:195–199, 1992.MATHCrossRefMathSciNetGoogle Scholar
  66. 66.
    T. Takaoka. Subcubic cost algorithms for the all pairs shortest path problem. Algorithmica, 20:309–318, 1998.MATHCrossRefMathSciNetGoogle Scholar
  67. 67.
    M. Thorup. Faster deterministic sorting and priority queues in linear space. In Proceedings of the 8th Annual ACM-SIAM Symposium on Discrete Algorithms, San Francisco, California, pages 550–555, 1998.Google Scholar
  68. 68.
    M. Thorup. Undirected single-source shortest paths with positive integer weights in linear time. Journal of the ACM, 46:362–394, 1999.MATHCrossRefMathSciNetGoogle Scholar
  69. 69.
    M. Thorup. Floats, integers, and single source shortest paths. Journal of Algorithms, 35:189–201, 2000.MATHCrossRefMathSciNetGoogle Scholar
  70. 70.
    M. Thorup. On RAM priority queues. SIAM Journal on Computing, 30(1):86–109, 2000.MATHCrossRefMathSciNetGoogle Scholar
  71. 71.
    M. Thorup. Compact oracles for reachability and approximate distances in planar digraphs. manuscript, 2001.Google Scholar
  72. 72.
    M. Thorup and U. Zwick. Approximate distance oracles. In Proceedings of the 33th Annual ACM Symposium on Theory of Computing, Crete, Greece, 2001.Google Scholar
  73. 73.
    M. Thorup and U. Zwick. Compact routing schemes. In Proc. of the 13th Annual ACM Symposium on Parallel Algorithms and Architectures, Crete, Greece, 2001.Google Scholar
  74. 74.
    P. van Emde Boas. Preserving order in a forest in less than logarithmic time and linear space. Information Processing Letters, 6(3):80–82, 1977.MATHCrossRefGoogle Scholar
  75. 75.
    P. van Emde Boas, R. Kaas, and E. Zijlstra. Design and implementation of an efficient priority queue. Mathematical Systems Theory, 10:99–127, 1977.MATHCrossRefGoogle Scholar
  76. 76.
    G. Yuval. An algorithm for finding all shortest paths using N 2.81 infinite-precision multiplications. Information Processing Letters, 4:155–156, 1976.MATHCrossRefMathSciNetGoogle Scholar
  77. 77.
    U. Zwick. All pairs shortest paths in weighted directed graphs-exact and almost exact algorithms. In Proceedings of the 39th Annual IEEE Symposium on Foundations of Computer Science, Palo Alto, California, pages 310–319, 1998. Journal version submitted for publicaiton under the title All-pairs shortest paths using bridging sets and rectangular matrix multiplication. Google Scholar
  78. 78.
    U. Zwick. All pairs lightest shortest paths. In Proceedings of the 31th Annual ACM Symposium on Theory of Computing, Atlanta, Georgia, pages 61–69, 1999.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2001

Authors and Affiliations

  • Uri Zwick
    • 1
  1. 1.School of Computer ScienceTel Aviv UniversityTel AvivIsrael

Personalised recommendations