Fast Reduction of Ternary Quadratic Forms

  • Friedrich Eisenbrand
  • Günter Rote
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 2146)

Abstract

We show that a positive definite integral ternary form can be reduced with O(M(s) log2 s) bit operations, where s is the binary encoding length of the form and M(s) is the bit-complexity of s-bit integer multiplication.

This result is achieved in two steps. First we prove that the the classical Gaussian algorithm for ternary form reduction, in the variant of Lagarias, has this worst case running time. Then we show that, given a ternary form which is reduced in the Gaussian sense, it takes only a constant number of arithmetic operations and a constant number of binary-form reductions to fully reduce the form.

Finally we describe how this algorithm can be generalized to higher dimensions. Lattice basis reduction and shortest vector computation in fixed dimension d can be done with O(M(s) logd-1 s) bit-operations.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    A.V. Aho, J.E. Hopcroft, and J.D. Ullman. The Design and Analysis of Computer Algorithms. Addison-Wesley, Reading, 1974.MATHGoogle Scholar
  2. 2.
    J.W.S. Cassels. Rational quadratic forms. Academic Press, 1978.Google Scholar
  3. 3.
    F. Eisenbrand. Short vectors of planar lattices via continued fractions. Information Processing Letters, 2001, to appear. http://www.mpi-sb.mpg.de/~eisen/report_lattice.ps.gz
  4. 4.
    C.F. Gauβ. Disquisitiones arithmeticae. Gerh. Fleischer Iun., 1801.Google Scholar
  5. 5.
    C.F. Gauβ. Recension der “Untersuchungen über die Eigenschaften der positiven ternären quadratischen Formen von Ludwig August Seeber.’ Reprinted in Journal für die reine und angewandte Mathematik, 20:312–320, 1840.Google Scholar
  6. 6.
    Ch. Hermite. Extraits de lettres de M. Ch. Hermite à M. Jacobi sur différents objets de la théorie des nombres. Journal für die reine und angewandte Mathematik, 40, 1850.Google Scholar
  7. 7.
    J. C. Lagarias. Worst-case complexity bounds for algorithms in the theory of integral quadratic forms. Journal of Algorithms, 1:142–186, 1980.MATHMathSciNetCrossRefGoogle Scholar
  8. 8.
    A.K. Lenstra, H.W. Lenstra, and L. Lovász. Factoring polynomials with rational coefficients. Math. Annalen, 261:515–534, 1982.MATHCrossRefGoogle Scholar
  9. 9.
    H.W. Lenstra. Integer programming with a fixed number of variables. Mathematics of Operations Research, 8(4):538–548, 1983.MATHMathSciNetCrossRefGoogle Scholar
  10. 10.
    A. Schönhage. Fast reduction and composition of binary quadratic forms. In International Symposium on Symbolic and Algebraic Computation, ISSAC’91, pages 128–133. ACM Press, 1991.Google Scholar
  11. 11.
    A. Schönhage and V. Strassen. Schnelle Multiplikation grosser Zahlen (Fast multiplication of large numbers). Computing, 7:281–292, 1971.MATHCrossRefGoogle Scholar
  12. 12.
    A. Schrijver. Theory of Linear and Integer Programming. John Wiley, 1986.Google Scholar
  13. 13.
    L.A. Seeber. Untersuchung über die Eigenschaften der positiven ternären quadratischen Formen. Loeffler, Mannheim, 1831.Google Scholar
  14. 14.
    I. Semaev. A 3-dimensional lattice reduction algorithm. In Cryptography and Lattices Conference, CALC 2001. This volume, pp. 181–193, 2001.Google Scholar
  15. 15.
    B. Vallée. An affine point of view on minima finding in integer lattices of lower dimensions. In Proceedings of the European Conference on Computer Algebra, EUROCAL’87, volume 378 of Lecture Notes in Computer Science, pp. 376–378. Springer, Berlin, 1989.Google Scholar
  16. 16.
    C.K. Yap. Fast unimodular reduction: Planar integer lattices. In Proceedings of the 33rd Annual Symposium on Foundations of Computer Science, pages 437–446, Pittsburgh, 1992. IEEE Computer Society Press.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2001

Authors and Affiliations

  • Friedrich Eisenbrand
    • 1
  • Günter Rote
    • 2
  1. 1.Max-Planck-Institut für InformatikSaarbrückenGermany
  2. 2.Institut für InformatikFreie Universität BerlinBerlinGermany

Personalised recommendations