Online Approximations for Wind-Field Models

  • Lehel Csató
  • Dan Cornford
  • Manfred Opper
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 2130)

Abstract

We study online approximations to Gaussian process models for spatially distributed systems. We apply our method to the prediction of wind fields over the ocean surface from scatterometer data. Our approach combines a sequential update of a Gaussian approximation to the posterior with a sparse representation that allows to treat problems with a large number of observations.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [Bernardo and Smith 1994]
    Bernardo, J. M. and A.F. Smith (1994). Bayesian Theory. John Wiley & Sons.Google Scholar
  2. [Bishop 1995]
    Bishop, C. M. (1995). Neural Networks for Pattern Recognition. New York, N.Y.: Oxford University Press.Google Scholar
  3. [Cressie 1991]
    Cressie, N. A. (1991). Statistics for Spatial Data. New York: Wiley.MATHGoogle Scholar
  4. [Csató and Opper 2001]
    Csató, L. and M. Opper (2001). Sparse representation for Gaussian process models. In T. K. Leen, T. G. Diettrich, and V. Tresp (Eds.), NIPS, Volume 13. The MIT Press. http://www.ncrg.aston.ac.uk/Papers.
  5. [Evans et al. 2000]_Evans, D. J., D. Cornford, and I. T. Nabney (2000). Structured neural network modelling of multi-valued functions for wind retrieval from scatterometer measurements. Neurocomputing Letters 30, 23–30.CrossRefGoogle Scholar
  6. [Kimeldorf and Wahba 1971]
    Kimeldorf, G. and G. Wahba (1971). Some results on Tchebycheffian spline functions. J. Math. Anal. Applic. 33, 82–95.MATHCrossRefMathSciNetGoogle Scholar
  7. [Nabney et al. 2000]_Nabney, I. T., D. Cornford, and C. K. I. Williams (2000). Bayesian inference for wind field retrieval. Neurocomputing Letters 30, 3–11.CrossRefGoogle Scholar
  8. [Offiler 1994]
    Offiler, D. (1994). The calibration of ERS-1 satellite scatterometer winds. Journal of Atmospheric and Oceanic Technology 11, 1002–1017.CrossRefGoogle Scholar
  9. [Opper 1998]
    Opper, M. (1998). A Bayesian approach to online learning. See Saad [1998], pp. 363–378.Google Scholar
  10. [Opper and Winther 1999]
    Opper, M. and O. Winther (1999). Gaussian processes and SVM: Mean field results and leave-one-out estimator. In A. Smola, P. Bartlett, B. Schölkopf, and C. Schuurmans (Eds.), Advances in Large Margin Classifiers, pp. 43–65. Cambridge, MA: The MIT Press.Google Scholar
  11. [Saad 1998]
    Saad, D. (1998). On-Line Learning in Neural Networks. Cambridge Univ. Press.Google Scholar
  12. [Stoffelen and Anderson 1997a]
    Stoffelen, A. and D. Anderson (1997a). Ambiguity removal and assimiliation of scatterometer data. Quarterly Journal of the Royal Meteorological Society 123, 491–518.CrossRefGoogle Scholar
  13. [Stoffelen and Anderson 1997b]
    Stoffelen, A. and D. Anderson (1997b). Scatterometer data interpretation: Estimation and validation of the transfer function CMOD4. Journal of Geophysical Research 102, 5767–5780.CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2001

Authors and Affiliations

  • Lehel Csató
    • 1
  • Dan Cornford
    • 1
  • Manfred Opper
    • 1
  1. 1.Neural Computing Research GroupAston UniversityBirminghamUK

Personalised recommendations