Approximation of Time-Varying Functions with Local Regression Models

  • Achim Lewandowski
  • Peter Protzel
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 2130)


Industrial or robot control applications which have to cope with changing environments require adaptive models. The standard procedure of training a neural network off-line with no further learning during the actual operation of the network is not sufficient in those cases. Therefore, we are concerned with developing algorithms for approximating time-varying functions. We assume that the data arrives sequentially and we require an immediate update of the approximating function. The algorithm presented in this paper uses local linear regression models with adaptive kernel functions describing the validity region of a local model. While the method is developed to approximate a time-variant function, naturally it can also be used to improve the fit for a time-invariant function. An example is used to demonstrate the learning capabilities of the algorithm.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Schaal, S., Atkeson, C.: Constructive incremental learning from only local information. Neural Computation, 10(8) (1998) 2047–2084CrossRefGoogle Scholar
  2. 2.
    Vijayakumar, S., Schaal, S.: Locally weighted projection regression. Technical Report (2000).Google Scholar
  3. 3.
    Lewandowski, A., Tagscherer, M., Kindermann, L., Protzel, P.: Improving the fit of locally weighted regression models. Proceedings of the 6th International Conference on Neural Information Processing, Vol. 1 (1999) 371–374Google Scholar
  4. 4.
    Atkeson, C., Moore, A., Schaal, S.: Locally weighted learning. Artificial Intelligence Review, 11(4) (1997) 76–113Google Scholar
  5. 5.
    Ljung, L., Söderström, T.: Theory and practice of recursive identification. MIT Press, Cambridge (1986)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2001

Authors and Affiliations

  • Achim Lewandowski
    • 1
  • Peter Protzel
    • 1
  1. 1.Dept. of Electrical Engineering and Information Technology Institute of AutomationChemnitz University of TechnologyChemnitzGermany

Personalised recommendations