Advertisement

Two-Party Generation of DSA Signatures

Extended Abstract
  • Philip MacKenzie
  • Michael K. Reiter
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 2139)

Abstract

We describe a means of sharing the DSA signature function, so that two parties can efficiently generate a DSA signature with respect to a given public key but neither can alone. We focus on a certain instantiation that allows a proof of security for concurrent execution in the random oracle model, and that is very practical. We also briefly outline a variation that requires more rounds of communication, but that allows a proof of security for sequential execution without random oracles.

Keywords

Encryption Scheme Signature Scheme Shared Secret Random Oracle Test Oracle 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    J. Benaloh. Dense probabilistic encryption. In Workshop on Selected Areas of Cryptography, pages 120–128, 1994.Google Scholar
  2. 2.
    N. Barić and B. Pfitzmann. Collision-free accumulators and fail-stop signature schemes without trees. In EUROCRYPT’ 96 (LNCS 1233), pages 480–494, 1997.Google Scholar
  3. 3.
    M. Blum, A. DeSantis, S. Micali, and G. Persiano. Noninteractive zero-knowledge. SIAM Journal of Computing 20(6):1084–1118, 1991.zbMATHCrossRefMathSciNetGoogle Scholar
  4. 4.
    C. Boyd. Digital multisignatures. In H. J. Beker and F. C. Piper, editors, Cryptography and Coding, pages 241–246. Clarendon Press, 1986.Google Scholar
  5. 5.
    M. Bellare and P. Rogaway. Random oracles are practical: A paradigm for designing efficient protocols. In 1st ACM Conference on Computer and Communications Security, pages 62–73, November 1993.Google Scholar
  6. 6.
    R. A. Croft and S. P. Harris. Public-key cryptography and reusable shared secrets. In H. Baker and F. Piper, editors, Cryptography and Coding, pages 189–201, 1989.Google Scholar
  7. 7.
    M. Cerecedo, T. Matsumoto, H. Imai. Efficient and secure multiparty generation of digital signatures based on discrete logarithms. IEICE Trans. Fundamentals of Electronics Communications and Computer Sciences E76A(4):532–545, April 1993.Google Scholar
  8. 8.
    Y. Desmedt. Society and group oriented cryptography: a new concept. In CRYPTO’ 87 (LNCS 293), pages 120–127, 1987.Google Scholar
  9. 9.
    Y. Desmedt and Y. Frankel. Threshold cryptosystems. In CRYPTO’ 89 (LNCS 435), pages 307–315, 1989.Google Scholar
  10. 10.
    T. ElGamal. A public key cryptosystem and a signature scheme based on discrete logarithms. IEEE Transactions on Information Theory, 31:469–472, 1985.zbMATHCrossRefMathSciNetGoogle Scholar
  11. 11.
    FIPS 180-1. Secure hash standard. Federal Information Processing Standards Publication 180-1, U.S. Dept. of Commerce/NIST, National Technical Information Service, Springfield, Virginia, 1995.Google Scholar
  12. 12.
    FIPS 186. Digital signature standard. Federal Information Processing Standards Publication 186, U.S. Dept. of Commerce/NIST, National Technical Information Service, Springfield, Virginia, 1994.Google Scholar
  13. 13.
    Y. Frankel. A practical protocol for large group oriented networks. In EUROCRYPT’ 89 (LNCS 434), pages 56–61, 1989.Google Scholar
  14. 14.
    Y. Frankel, P. MacKenzie, and M. Yung. Adaptively-secure distributed threshold public key systems. In European Symposium on Algorithms (LNCS 1643), pages 4–27, 1999.Google Scholar
  15. 15.
    E. Fujisaki and T. Okamoto. Statistical zero-knowledge protocols to prove modular polynomial relations. In CRYPTO’ 97 (LNCS 1294), pages 16–30, 1997.Google Scholar
  16. 16.
    R. Gennaro, S. Jarecki, H. Krawczyk, and T. Rabin. Robust threshold DSS signatures. In EUROCRYPT’ 96 (LNCS 1070), pages 354–371, 1996.Google Scholar
  17. 17.
    R. Gennaro, S. Jarecki, H. Krawczyk, and T. Rabin. Secure distributed key generation for discrete-log based cryptosystems. In EUROCRYPT’ 99 (LNCS 1592), pages 295–310, 1999.Google Scholar
  18. 18.
    S. Goldwasser and S. Micali. Probabilistic encryption. Journal of Computer and System Sciences 28:270–299, 1984.zbMATHCrossRefMathSciNetGoogle Scholar
  19. 19.
    S. Goldwasser, S. Micali, and R. L. Rivest. A digital signature scheme secure against adaptive chosen-message attacks. SIAM Journal of Computing 17(2):281–308, April 1988.Google Scholar
  20. 20.
    L. Harn. Group oriented (t, n) threshold digital signature scheme and digital multisignature. IEE Proc.-Comput. Digit. Tech. 141(5):307–313, 1994.zbMATHCrossRefGoogle Scholar
  21. 21.
    A. Herzberg, M. Jakobsson, S. Jarecki, H. Krawczyk, and M. Yung. Proactive public-key and signature schemes. In 4th ACM Conference on Computer and Communications Security, pages 100–110, 1997.Google Scholar
  22. 22.
    T. Hwang. Cryptosystem for group oriented cryptography. In EUROCRYPT’ 90 (LNCS 473), pages 352–360, 1990.Google Scholar
  23. 23.
    S. Jarecki and A. Lysyanskaya. Adaptively secure threshold cryptography: introducing concurrency, removing erasures. In EUROCRYPT 2000 (LNCS 1807), pages 221–242, 2000.CrossRefGoogle Scholar
  24. 24.
    J. Kilian, E. Petrank, and C. Rackoff. Lower bounds for zero knowledge on the internet. In 39th IEEE Symposium on Foundations of Computer Science, pages 484–492, 1998.Google Scholar
  25. 25.
    D. W. Kravitz. Digital signature algorithm. U.S. Patent 5,231,668, 27 July 1993.Google Scholar
  26. 26.
    S. Langford. Threshold DSS signatures without a trusted party. In CRYPTO’ 95 (LNCS 963), pages 397–409, 1995.Google Scholar
  27. 27.
    P. MacKenzie and M. K. Reiter. Networked cryptographic devices resilient to capture. DIMACS Technical Report 2001-19, May 2001. Extended abstract in 2001 IEEE Symposium on Security and Privacy, May 2001.Google Scholar
  28. 28.
    D. Naccache and J. Stern. A new public-key cryptosystem. In EUROCRYPT’ 97 (LNCS 1233), pages 27–36, 1997.Google Scholar
  29. 29.
    M. Naor and M. Yung. Public-key cryptosystems provably secure against chosen ciphertext attacks. In 22nd ACM Symposium on Theory of Computing, pages 427–437, 1990.Google Scholar
  30. 30.
    T. Okamoto and S. Uchiyama. A new public-key cryptosystem, as secure as factoring. In EUROCRYPT’ 98 (LNCS 1403), pages 308–318, 1998.CrossRefGoogle Scholar
  31. 31.
    P. Paillier. Public-key cryptosystems based on composite degree residuosity classes. In EUROCRYPT’ 99 (LNCS 1592), pages 223–238, 1999.Google Scholar
  32. 32.
    C. Park and K. Kurosawa. New ElGamal type threshold digital signature scheme. IEICE Trans. Fundamentals of Electronics Communications and Computer Sciences E79A(1):86–93, January, 1996.Google Scholar
  33. 33.
    T. Pedersen. A threshold cryptosystem without a trusted party. In EUROCRYPT’ 91 (LNCS547), pages 522–526, 1991.Google Scholar
  34. 34.
    A. Yao. Protocols for secure computation. In 23rd IEEE Symposium on Foundations of Computer Science, pages 160–164, 1982.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2001

Authors and Affiliations

  • Philip MacKenzie
    • 1
  • Michael K. Reiter
    • 1
  1. 1.Bell LabsLucent TechnologiesMurray HillUSA

Personalised recommendations