Advertisement

Optimal Möbius Transformations for Information Visualization and Meshing

  • Marshall Bern
  • David Eppstein
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 2125)

Abstract

We give linear-time quasiconvex programming algorithms for finding a Möbius transformation of a set of spheres in a unit ball or on the surface of a unit sphere that maximizes the minimum size of a transformed sphere. We can also use similar methods to maximize the minimum distance among a set of pairs of input points. We apply these results to vertex separation and symmetry display in spherical graph drawing, viewpoint selection in hyperbolic browsing, element size control in conformal structured mesh generation, and brain flat mapping.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    N. Amenta, M. Bern, and D. Eppstein. Optimal point placement for mesh smoothing. J. Algorithms 30(2):302–322, February 1999, cs.CG/9809081.Google Scholar
  2. 2.
    M. Bern and D. Eppstein. Optimal Möbius transformations for information visualization and meshing. ACM Computing Research Repository, 2001, cs.CG/0101006.Google Scholar
  3. 3.
    M. Bern and P. E. Plassmann. Mesh generation. Handbook of Computational Geometry, chapter 6, pp. 291–332. Elsevier, 2000.Google Scholar
  4. 4.
    J.-D. Boissonnat, A. Cérézo, O. Devillers, and M. Teillaud. Output-sensitive construction of the Delaunay triangulation of points lying in two planes. Int. J. Comp. Geom. & Appl. 6(1):1–14, 1996.MATHCrossRefGoogle Scholar
  5. 5.
    H. Breu and D. G. Kirkpatrick. On the complexity of recognizing intersection and touching graphs of disks. Proc. 3rd Int. Symp. Graph Drawing, pp. 88–98. Springer-Verlag, Lecture Notes in Comput. Sci. 1027, 1995.Google Scholar
  6. 6.
    G. R. Brightwell and E. R. Scheinerman. Representations of planar graphs. SIAM J. Discrete Math. 6(2):214–229, 1993.MATHCrossRefMathSciNetGoogle Scholar
  7. 7.
    C. Collins and K. Stephenson. A circle packing algorithm. Manuscript, September 1997, http://www.math.utk.edu/~kens/ACPA/ACPA.ps.gz.
  8. 8.
    T. A. Driscoll and S. A. Vavasis. Numerical conformal mapping using cross-ratios and Delaunay triangulation. SIAM J. Sci. Comput. 19(6):1783–1803, 1998, ftp: ftp://ftp.cs.cornell.edu/pub/vavasis/papers/crdt.ps.gz.MATHCrossRefMathSciNetGoogle Scholar
  9. 9.
    D. Eppstein. Setting parameters by example. Proc. 40th Symp. Foundations of Computer Science, pp. 309–318. IEEE, October 1999, cs.DS/9907001.Google Scholar
  10. 10.
    A. Formella and J. Keller. Generalized fisheye views of graphs. Proc. 3rd Int. Symp. Graph Drawing, pp. 243–253. Springer-Verlag, Lecture Notes in Comput. Sci. 1027, 1995, http://www-wjp.cs.uni-sb.de/~formella/dist2.ps.gz.
  11. 11.
    B. Gärtner and S. Schönherr. Exact primitives for smallest enclosing ellipses. Inf. Proc. Lett. 68:33–38, 1998.CrossRefGoogle Scholar
  12. 12.
    L. H. Howell. Computation of Conformal Maps by Modified Schwarz-Christoffel Transformations. Ph.D. thesis, MIT, 1990, http://www.llnl.gov/CASC/people/howell/lhhphd.ps.gz.
  13. 13.
    M. K. Hurdal, P. L. Bowers, K. Stephenson, D. W. L. Summers, K. Rehm, K. Shaper, and D. A. Rottenberg. Quasi-conformally flat mapping the human cerebellum. Tech. Rep. FSU-99-05, Florida State Univ., Dept. of Mathematics, 1999, http://www.math.fsu.edu/~aluffi/archive/paper98.ps.gz.
  14. 14.
    B. Iversen. Hyperbolic Geometry. London Math. Soc. Student Texts 25. Cambridge Univ. Press, 1992.Google Scholar
  15. 15.
    P. Koebe. Kontaktprobleme der konformen Abbildung. Ber. Verh. Sächs. Akad. Wiss. Leipzig Math.-Phys. Kl. 88:141–164, 1936.Google Scholar
  16. 16.
    J. Lamping, R. Rao, and P. Pirolli. A focus+context technique based on hyperbolic geometry for viewing large hierarchies. Proc. Conf. Human Factors in Computing Systems, pp. 401–408. ACM, 1995, http://www.parc.xerox.com/istl/projects/uir/pubs/pdf/ UIR-R-1995-04-Lamping-CHI95-FocusContext.pdf.
  17. 17.
    J. McKay. Sighting point. sci.math, 20 April 1989, http://www.ics.uci.edu/~eppstein/junkyard/maxmin-angle.html.
  18. 18.
    B. Mohar. A polynomial time circle packing algorithm. Discrete Math. 117(1–3):257–263, 1993.MATHCrossRefMathSciNetGoogle Scholar
  19. 19.
    T. Munzner. Exploring large graphs in 3D hyperbolic space. IEEE Comp. Graphics & Appl. 18(4):18–23, 1997, http://graphics.stanford.edu/papers/h3cga/.CrossRefGoogle Scholar
  20. 20.
    T. Munzner and P. Burchard. Visualizing the structure of the world wide web in 3D hyperbolic space. Proc. VRML’ 95, pp. 33–38. ACM, 1995, http://www.geom.umn.edu/docs/research/webviz/webviz/.
  21. 21.
    H. Sachs. Coin graphs, polyhedra, and conformal mapping. Discrete Math. 134(1–3):133–138, 1994.MATHCrossRefMathSciNetGoogle Scholar
  22. 22.
    W. D. Smith. Accurate circle configurationsand numerical conformal mapping in polynomial time, http://www.neci.nj.nec.com/homepages/wds/braegger. ps. Manuscript, December 1991.
  23. 23.
    F. Stenger and R. Schmidtlein. Conformal maps via sinc methods. Proc. Conf. Computational Methods in Function Theory, pp. 505–549. World Scientific, 1997, http://www.cs.utah.edu/~stenger/PAPERS/stenger-sinc-comformal-maps.ps.
  24. 24.
    J. F. Thompson, Z. U. A. Warsi, and C. W. Mastin. Numerical Grid Generation: Foundations and Applications. North-Holland, 1985.Google Scholar
  25. 25.
    L. N. Trefethen. Numerical computation of the Schwarz-Christoffel transformation. SIAM J. Sci. Stat. Comput. 1(1):82–102, 1980.MATHCrossRefMathSciNetGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2001

Authors and Affiliations

  • Marshall Bern
    • 1
  • David Eppstein
    • 2
  1. 1.Xerox PARCPalo AltoUSA
  2. 2.Dept. Inf. & Comp. Sci.UC IrvineUSA

Personalised recommendations