A Fully Complete PER Model for ML Polymorphic Types

  • Samson Abramsky
  • Marina Lenisa
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 1862)

Abstract

We present a linear realizability technique for building Partial Equivalence Relations (PER) categories over Linear Combinatory Algebras. These PER categories turn out to be linear categories and to form an adjoint model with their co-Kleisli categories. We show that a special linear combinatory algebra of partial involutions, arising from Geometry of Interaction constructions, gives rise to a fully and faithfully complete model for ML polymorphic types of system F.

Keywords

ML-polymorphic types linear logic PER models Geometry of Interaction full completeness 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Abr96.
    S. Abramsky. Retracing some paths in Process Algebra, Concur’96, 1996.Google Scholar
  2. Abr97.
    S. Abramsky. Axioms for Full Abstraction and Full Completeness, 1997, to appear.Google Scholar
  3. Abr97a.
    S. Abramsky. Interaction, Combinators, and Complexity, Notes, Siena (Italy), 1997.Google Scholar
  4. AHPS98.
    S. Abramsky, E. Haghverdi, P. Panangaden, P. Scott. Geometry of Interaction and Models of Combinatory Logic, 1998, to appear.Google Scholar
  5. AJ94.
    S. Abramsky, R. Jagadeesan. New foundations for the Geometry of Interaction, Inf. and Comp. 111(1), 1994, 53–119.MATHCrossRefMathSciNetGoogle Scholar
  6. AJ94a.
    S. Abramsky, R. Jagadeesan. Games and Full Completeness for Multiplicative Linear Logic, J. of Symbolic Logic 59(2), 1994, 543–574.MATHCrossRefMathSciNetGoogle Scholar
  7. AJM96.
    S. Abramsky, R. Jagadeesan, P. Malacaria. Full Abstraction for PCF, 1996, Inf. and Comp. to appear.Google Scholar
  8. AL99.
    S. Abramsky, J. Longley. Realizability models based on history-free strategies, Draft paper, 1999.Google Scholar
  9. AL99a.
    S. Abramsky, M. Lenisa. Fully Complete Models for ML Polymorphic Types, Technical Report ECS-LFCS-99-414, LFCS, 1999 (available at http://www.dimi.uniud.it/~lenisa/Papers/Soft-copy-ps/lfcs99.ps.gz).
  10. AM97.
    S. Abramsky, G. McCusker. Full abstraction for idealized Algol with passive expressions, TCS 227, 1999, 3–42.MATHCrossRefMathSciNetGoogle Scholar
  11. AM99.
    S. Abramsky, P. Mellies. Concurrent Games and Full Completeness, LICS’99.Google Scholar
  12. AL91.
    A. Asperti, G. Longo. Categories, Types and Structures, Foundations of Computing Series, The MIT Press, 1991.Google Scholar
  13. BC88.
    V. Breazu-Tannen, T. Coquand. Extensional models for polymorphism, TCS 59, 1988, 85–114.CrossRefMATHMathSciNetGoogle Scholar
  14. Cro93.
    R. Crole, Categories for Types, Cambridge University Press, 1993.Google Scholar
  15. DFH99.
    P. Di Gianantonio, G. Franco, F. Honsell. Game Semantics for Untyped λ-calculus, TLCA’99, LNCS, 1999.Google Scholar
  16. Gir72.
    J.Y. Girard. Interprétation functionelle et élimunation des coupures de l’arithmétique d’ordre supérieur, Thése d’Etat, Université Paris VII, 1972.Google Scholar
  17. Gir89.
    J.Y. Girard. Towards a Geometry of Interaction, Contemporary Mathematics 92, 1989, 69–108.MathSciNetGoogle Scholar
  18. Hug99.
    D. Hughes. Hypergame Semantics: Full Completeness for System F, D.Phil. thesis, University of Oxford, submitted 1999.Google Scholar
  19. HRR90.
    J. Hyland, E. Robinson, G. Rosolini. Algebraic types in PER models, MFPS, M. Main et al. eds, LNCS 442, 1990, 333–350.Google Scholar
  20. HO96.
    M. Hyland, L. Ong. On full abstraction for PCF, Inf. and Comp., 1996, to appear.Google Scholar
  21. KNO99.
    A. Ker, H. Nickau, L. Ong. More Universal Game Models of Untyped λ-Calculus: The Böhm Tree Strikes Back, CSL’99, LNCS, 1999.Google Scholar
  22. JSV96.
    A. Joyal, R. Street, D. Verity. Traced monoidal categories, Math. Proc. Comb. Phil. Soc. 119, 1996, 447–468.MATHMathSciNetCrossRefGoogle Scholar
  23. Lai97.
    J. Laird. Full abstraction for functional languages with control, LICS’97.Google Scholar
  24. McC96.
    G. McCusker. Games and full abstraction for FPC, LICS’96, 1996.Google Scholar
  25. Nic94.
    H. Nickau. Hereditarily sequential functionals, Proc. of the Symposium Logical Foundations for Computer Science, LNCS 813, 1994.Google Scholar
  26. Sta88.
    R. Statman. λ-definable functionals and βη-conversion, Arch. Math. Logik 23, 1983, 21–26.MATHCrossRefMathSciNetGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2000

Authors and Affiliations

  • Samson Abramsky
    • 1
  • Marina Lenisa
    • 2
  1. 1.LFCS, Division of InformaticsUniversity of EdinburghUK
  2. 2.Dipartimento di Matematica e InformaticaUniversità di UdineUdineItaly

Personalised recommendations