A Theory of Explicit Mathematics Equivalent to ID1

  • Reinhard Kahle
  • Thomas Studer
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 1862)

Abstract

We show that the addition of name induction to the theory \( EETJ + \left( {\mathcal{L}_{EM} - I_N } \right) \) of explicit elementary types with join yields a theory proof-theoretically equivalent to ID1.

Keywords

Proof theory explicit mathematics inductive definitions 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. AC96.
    Martín Abadi and Luca Cardelli. A Theory of Objects. Springer, 1996.Google Scholar
  2. Bee85.
    Michael Beeson. Foundations of Constructive Mathematics. Ergebnisse der Mathematik und ihrer Grenzgebiete; 3.Folge, Bd. 6. Springer, Berlin, 1985.MATHGoogle Scholar
  3. BFPS81.
    Wilfried Buchholz, Solomon Feferman, Wolfram Pohlers, and Wilfried Sieg. Iterated Inductive Definitions and Subsystems of Analysis: Recent Proof-Theoretical studies, volume 897 of Lecture Notes in Mathematics. Springer-Verlag, 1981.Google Scholar
  4. Can96.
    Andrea Cantini. Logical Frameworks for Truth and Abstraction, volume 135 of Studies in Logic and the Foundations of Mathematics.North-Holland, 1996.Google Scholar
  5. Fef70.
    Solomon Feferman. Formal theories for transfinite iterations of generalized inductive definitions and some subsystems of analysis. In A. Kino, J. Myhill, and R. Vesley, editors, Intuitionismus and Proof Theory, pages 303–326. North Holland, Amsterdam, 1970.Google Scholar
  6. Fef75.
    Solomon Feferman. A language and axioms for explicit mathematics. In J. Crossley, editor, Algebra and Logic, volume 450 of Lecture Notes in Mathematics, pages 87–139. Springer, 1975.Google Scholar
  7. Fef79.
    Solomon Feferman. Constructive theories of functions and classes. In M. Boffa, D. van Dalen, and K. McAloon, editors, Logic Colloquium 78, pages 159–224. North-Holland, Amsterdam, 1979.Google Scholar
  8. Fef88.
    Solomon Feferman. Hilbert’s program relativized: Proof-theoretical and foundational reductions. Journal of Symbolic Logic, 53(2):364–384, 1988.MATHCrossRefMathSciNetGoogle Scholar
  9. Fef90.
    Solomon Feferman. Polymorphic typed lambda-calculus in a type-free axiomatic framework. In W. Sieg, editor, Logic and Computation, volume 106 of Contemporary Mathematics, pages 101–136. American Mathematical Society, 1990.Google Scholar
  10. Fef91.
    Solomon Feferman. Logics for termination and correctness of functional programs. In Y. Moschovakis, editor, Logic from Computer Sciences, pages 95–127. Springer, 1991.Google Scholar
  11. Fef92.
    Solomon Feferman. Logics for termination and correctness of functional programs II: Logics of strength PRA. In P. Aczel, H. Simmons, and S.S. Wainer, editors, Proof Theory, pages 195–225. Cambridge University Press, 1992.Google Scholar
  12. Fef0x.
    Solomon Feferman. Does reductive proof theory have a viable rationale? Erkenntnis, 200x.To appear.Google Scholar
  13. FJ93.
    Solomon Feferman and Gerhard Jäger. Systems of explicit mathematics with non-constructive μ-operator.P art I. Annals of Pure and Applied Logic, 65(3):243–263, 1993.MATHCrossRefMathSciNetGoogle Scholar
  14. FJ96.
    Solomon Feferman and Gerhard Jäger. Systems of explicit mathematics with non-constructive μ-operator. Part II. Annals of Pure and Applied Logic, 79:37–52, 1996.MATHCrossRefMathSciNetGoogle Scholar
  15. GR94.
    Ed Griffor and Michael Rathjen. The strength of some Martin-Löf type theories. Archive for Mathematical Logic, 33:347–385, 1994.MATHCrossRefMathSciNetGoogle Scholar
  16. Jäg88.
    Gerhard Jäger. Induction in the elementary theory of types and names. In E. Börger, H. Kleine Büning, and M.M. Richter, editors, Computer Science Logic’ 87, volume 329 of Lecture Notes in Computer Science, pages 118–128. Springer, 1988.Google Scholar
  17. JKS99.
    Gerhard Jäger, Reinhard Kahle, and Thomas Strahm. On applicative theories. In A. Cantini, E. Casari, and P. Minari, editors, Logic and Foundation of Mathematics, pages 83–92. Kluwer, 1999.Google Scholar
  18. JKS0x.
    Gerhard Jäger, Reinhard Kahle, and Thomas Studer. Universes in explicit mathematics.200x.Submitted.Google Scholar
  19. Kre63.
    Georg Kreisel. Generalized inductive definitions. T echnical report, Stanford Report, 1963.Google Scholar
  20. Mar94.
    Markus Marzetta. Predicative Theories of Types and Names. Dissertation, Universität Bern, Institut für Informatik und angewandte Mathematik, 1994.Google Scholar
  21. MS98.
    Markus Marzetta and Thomas Strahm. The μ quantification operator in explicit mathematics with universes and iterated fixed point theories with ordinals. Archive for Mathematical Logic, 37:391–413, 1998.MATHCrossRefMathSciNetGoogle Scholar
  22. Pal98.
    Erik Palmgren. On universes in type theory. In G. Sambin and J. Smith, editors, Twenty Five Years of Constructive Type Theory, pages 191–204. Oxford University Press, 1998.Google Scholar
  23. Poh89.
    Wolfram Pohlers. Proof Theory, volume 1407 of Lecture Notes in Mathematics. Springer, 1989.Google Scholar
  24. Stä97.
    Robert Stärk. Call-by-value, call-by-name and the logic of values.In D. van Dalen and M. Bezem, editors, Computer Science Logic CSL’ 96: Selected Papers, volume 1258 of Lecture Notes in Computer Science, pages 431–445. Springer, 1997.Google Scholar
  25. Stä98.
    Robert Stärk. Why the constant ‘unde.ned’? Logics of partial terms for strict and non-strict functional programming languages. Journal of Functional Programming, 8(2):97–129, 1998.MATHCrossRefMathSciNetGoogle Scholar
  26. Stu0x.
    Thomas Studer. A semantics for λstr 1 a calculus with overloading and latebinding. Journal of Logic and Computation, 200x.T o appear.Google Scholar
  27. TvD88.
    Anne Troelstra and Dirk van Dalen. Constructivism in Mathematics, volume II.North Holland, Amsterdam, 1988.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2000

Authors and Affiliations

  • Reinhard Kahle
    • 1
  • Thomas Studer
    • 2
  1. 1.WSIUniversität TübingenTübingenGermany
  2. 2.IAMUniversität BernBernSwitzerland

Personalised recommendations