Advertisement

Synthesizing Distributed Finite-State Systems from MSCs

  • Madhavan Mukund
  • K. Narayan Kumar
  • Milind Sohoni
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 1877)

Abstract

Message sequence charts (MSCs) are an appealing visual formalism often used to capture system requirements in the early stages of design. An important question concerning MSCs is the following: how does one convert requirements represented by MSCs into state-based specifications? A first step in this direction was the definition in [9] of regular collections of MSCs, together with a characterization of this class in terms of finite-state distributed devices called message-passing automata. These automata are, in general, nondeterministic. In this paper, we strengthen this connection and describe how to directly associate a deterministic message-passing automaton with each regular collection of MSCs. Since real life distributed protocols are deterministic, our result is a more comprehensive solution to the synthesis problem for MSCs. Our result can be viewed as an extension of Zielonka’s theorem for Mazurkiewicz trace languages [6,19] to the setting of finite-state message-passing systems.

Keywords

Synthesis Problem Primary Information Secondary Information Process Residue Communication Sequence 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Alur, R., Holzmann, G.J., and Peled, D.: An analyzer for message sequence charts. Software Concepts and Tools, 17(2) (1996) 70–77.zbMATHGoogle Scholar
  2. 2.
    Alur, R., and Yannakakis, M.: Model checking of message sequence charts. Proc. CONCUR’99, LNCS 1664, Springer Verlag (1999) 114–129.Google Scholar
  3. 3.
    Ben-Abdallah, H., and Leue, S.: Syntactic detection of process divergence and nonlocal choice in message sequence charts. Proc. TACAS’97, LNCS 1217, Springer-Verlag (1997) 259–274.Google Scholar
  4. 4.
    Booch, G., Jacobson, I., and Rumbaugh, J.: Unified Modeling Language User Guide. Addison Wesley (1997).Google Scholar
  5. 5.
    Damm, W., and Harel, D.: LCS’s: Breathing life into message sequence charts. Proc. FMOODS’99, Kluwer Academic Publishers (1999) 293–312.Google Scholar
  6. 6.
    Diekert, V., and Rozenberg, G. (Eds.): The book of traces. World Scientific (1995).Google Scholar
  7. 7.
    Harel, D., and Gery, E.: Executable object modeling with statecharts. IEEE Computer, July 1997 (1997) 31–42.Google Scholar
  8. 8.
    Henriksen, J. G., Mukund, M., Narayan Kumar K., and Thiagarajan, P. S.: On message sequence graphs and finitely generated regular MSC languages, to appear in Proc. ICALP 2000, LNCS, Springer-Verlag (2000).Google Scholar
  9. 9.
    Henriksen, J. G., Mukund, M., Narayan Kumar K., and Thiagarajan, P. S.: Regular collections of message sequence charts, to appear in Proc. MFCS 2000, LNCS, Springer-Verlag (2000).Google Scholar
  10. 10.
    Ladkin, P. B., and Leue, S.: Interpreting message flow graphs. Formal Aspects of Computing 7(5) (1975) 473–509.CrossRefGoogle Scholar
  11. 11.
    Levin, V., and Peled, D.: Verification of message sequence charts via template matching. Proc. TAPSOFT’97, LNCS 1214, Springer-Verlag (1997) 652–666.Google Scholar
  12. 12.
    Mauw, S., and Reniers, M. A.: High-level message sequence charts, Proc. SDL’ 97, Elsevier (1997) 291–306.Google Scholar
  13. 13.
    Mukund, M., Narayan Kumar, K., and Sohoni, M.: Keeping track of the latest gossip in message-passing systems. Proc. Structures in Concurrency Theory (STRICT), Workshops in Computing Series, Springer-Verlag (1995) 249–263.Google Scholar
  14. 14.
    Muscholl, A.: Matching Specifications for Message Sequence Charts. Proc. FOSSACS’99, LNCS 1578, Springer-Verlag (1999) 273–287.Google Scholar
  15. 15.
    Muscholl, A., Peled, D., and Su, Z.: Deciding properties for message sequence charts. Proc. FOSSACS’98, LNCS 1378, Springer-Verlag (1998) 226–242.Google Scholar
  16. 16.
    Rudolph, E., Graubmann, P., and Grabowski, J.: Tutorial on message sequence charts. In Computer Networks and ISDN Systems—SDL and MSC, Volume 28 (1996).Google Scholar
  17. 17.
    Thomas, W.: Automata on infinite objects. In van Leeuwen, J. (Ed.), Handbook of Theoretical Computer Science, Volume B, North-Holland, Amsterdam (1990) 133–191.Google Scholar
  18. 18.
    Thomas, W.: Languages, Automata, and Logic. In Rozenberg, G., and Salomaa, A. (Eds.), Handbook of Formal Language Theory, Vol. III, Springer-Verlag, New York (1997) 389–455.Google Scholar
  19. 19.
    Zielonka, W.: Notes on finite asynchronous automata. R. A. I. R. O.—Inf. Théor. et Appl., 21 (1987) 99–135.zbMATHMathSciNetGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2000

Authors and Affiliations

  • Madhavan Mukund
    • 1
  • K. Narayan Kumar
    • 1
  • Milind Sohoni
    • 2
  1. 1.Chennai Mathematical InstituteChennaiIndia
  2. 2.Indian Institute of Technology BombayMumbaiIndia

Personalised recommendations