Action Contraction

  • Arend Rensink
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 1877)


The question we consider in this paper is: “When can a combination of fine-grain execution steps be contracted into an atomic action execution”? Our answer is basically: “When no observer can see the difference.” This is worked out in detail by defining a notion of coupled split/atomic simulation refinement between systems which differ in the atomicity of their actions, and proving that this collapses to Parrow and Sjödin’s coupled similarity when the systems are composed with an observer.


Virtual Machine Atomic Action Idle State Label Transition System Process Algebra 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    L. Aceto and M. C. B. Hennessy. Towards action-refinement in process algebras. Information and Computation, 103:204–269, 1993.zbMATHCrossRefMathSciNetGoogle Scholar
  2. 2.
    L. Aceto and M. C. B. Hennessy. Adding action refinement to a finite process algebra. Information and Computation, 115:179–247, 1994.zbMATHCrossRefMathSciNetGoogle Scholar
  3. 3.
    J. C. M. Baeten and W. P. Weijland. Process Algebra. Cambridge University Press, 1990.Google Scholar
  4. 4.
    T. Bolognesi and E. Brinksma. Introduction to the ISO specification language LOTOS. Computer Networks and ISDN Systems, 14:25–59, 1987.CrossRefGoogle Scholar
  5. 5.
    G. Boudol and I. Castellani. Concurrency and atomicity. Theoretical Comput. Sci., 59:25–84, 1988.CrossRefzbMATHMathSciNetGoogle Scholar
  6. 6.
    E. Brinksma, B. Jonsson, and F. Orava. Refining interfaces of communicating systems. In S. Abramsky and T. S. E. Maibaum, eds., TAPSOFT’ 91, Volume 2, vol. 494 of Lecture Notes in Computer Science, pp. 297–312. Springer-Verlag, 1991.Google Scholar
  7. 7.
    F. Cherief and P. Schnoebelen. τ-bisimulation and full abstraction for refinement of actions. Information Processing Letters, 40:219–222, 1991.zbMATHCrossRefGoogle Scholar
  8. 8.
    W. R. Cleaveland, ed. Concur’ 92, vol. 630 of Lecture Notes in Computer Science. Springer-Verlag, 1992.zbMATHGoogle Scholar
  9. 9.
    R. Gerth, R. Kuiper, and J. Segers. Interface refinement in reactive systems. In W. R. Cleaveland [8], pp. 77–93.CrossRefGoogle Scholar
  10. 10.
    R. J. van Glabbeek. The linear time-branching time spectrum II: The semantics of sequential systems with silent moves. In E. Best, ed., Concur’ 93, vol. 715 of Lecture Notes in Computer Science, pp. 66–81. Springer-Verlag, 1993.Google Scholar
  11. 11.
    R. J. van Glabbeek and F. W. Vaandrager. Petri Net models for algebraic theories of concurrency. In J. W. de Bakker, A. J. Nijman, and P. C. Treleaven, eds., PARLE — Parallel Architectures and Languages Europe, Volume II: Parallel Languages, vol. 259 of Lecture Notes in Computer Science, pp. 224–242. Springer-Verlag, 1987.Google Scholar
  12. 12.
    R. J. van Glabbeek and F. W. Vaandrager. The difference between splitting in n and n + 1. Information and Computation, 136(2):109–142, 1997.zbMATHCrossRefMathSciNetGoogle Scholar
  13. 13.
    R. J. vanGlabbeek and W. P. Weijland. Branching time and abstraction in bisimulation semantics. J. ACM, 43(3):555–600, May 1996.Google Scholar
  14. 14.
    R. Gorrieri and C. Laneve. Split and ST bisimulation semantics. Information and Computation, 116(1):272–288, Jan. 1995.Google Scholar
  15. 15.
    C. A. R. Hoare. Communicating Sequential Processes. Prentice-Hall, 1985.Google Scholar
  16. 16.
    S. Katz. Refinement with global equivalence proofs in temporal logic. DIMACS Series in Discrete Mathematics and Theoretical Computer Science, 29:59–78, 1997.Google Scholar
  17. 17.
    L. Lamport. The mutual exclusion problem, part I — a theory of interprocess communication. J. ACM, 33(2):313–326, Apr. 1986.Google Scholar
  18. 18.
    R. Langerak. Transformations and Semantics for LOTOS. PhD thesis, University of Twente, Nov. 1992.Google Scholar
  19. 19.
    N. A. Lynch, M. Merritt, W. E. Weihl, and A. Fekete. Atomic Transactions. Morgan Kaufmann, San Mateo, 1994.Google Scholar
  20. 20.
    R. Milner. A Calculus of Communicating Systems, vol. 92 of Lecture Notes in Computer Science. Springer-Verlag, 1980.zbMATHGoogle Scholar
  21. 21.
    R. Milner. Communication and Concurrency. Prentice-Hall, 1989.Google Scholar
  22. 22.
    U. Nestmann and B. Pierce. Decoding choice encodings. In U. Montanari and V. Sassone, eds., Concur’ 96: Concurrency Theory, vol. 1119 of Lecture Notes in Computer Science, pp. 179–194. Springer-Verlag, 1996.Google Scholar
  23. 23.
    J. Parrow and P. Sjödin. Multiway synchronization verified with coupled simulation. In W. R. Cleaveland [8], pp. 518–533.CrossRefGoogle Scholar
  24. 24.
    J. Parrow and P. Sjödin. The complete axiomatization of Cs-congruence. In R. Enjalbert, E. W. Mayr, and K. W. Wagner, s., STACS 94, vol. 775 of Lecture Notes in Computer Science, pp. 557–568. Springer-Verlag, 1994.Google Scholar
  25. 25.
    A. Rensink. A theory of action contraction, 2000. Full version (including proofs): http://www.cs.
  26. 26.
    A. Rensink and R. Gorrieri. Vertical implementation. Information and Computation, 2000 (to appear). Extended version of “Vertical Bisimulation” (TAPSOFT’ 97); see also Hildesheimer Informatik-Bericht 9/98, University of Hildesheim.Google Scholar
  27. 27.
    W. Vogler. Failures semantics based on interval semiwords is a congruence for refinement. Distributed Computing, 4:139–162, 1991.zbMATHCrossRefMathSciNetGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2000

Authors and Affiliations

  • Arend Rensink
    • 1
  1. 1.Department of Computer ScienceUniversity of TwenteAE Enschede

Personalised recommendations