Advertisement

Reducing the Number of Solutions of NP Functions

  • Lane A. Hemaspaandra
  • Mitsunori Ogihara
  • Gerd Wechsung
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 1893)

Abstract

We study whether one can prune solutions from NP functions. Though it is known that, unless surprising complexity class collapses occur, one cannot reduce the number of accepting paths of NP machines [17], we nonetheless show that it often is possible to reduce the number of solutions of NP functions. For finite cardinality types, we give a sufficient condition for such solution reduction. We also give absolute and conditional necessary conditions for solution reduction, and in particular we show that in many cases solution reduction is impossible unless the polynomial hierarchy collapses.

Keywords

Input Size Satisfying Assignment 11th Annual IEEE Solution Reduction Polynomial Hierarchy 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    R. Book, T. Long, and A. Selman. Quantitative relativizations of complexity classes. SIAM Journal on Computing, 13(3):461–487, 1984.zbMATHCrossRefMathSciNetGoogle Scholar
  2. 2.
    R. Book, T. Long, and A. Selman. Qualitative relativizations of complexity classes. Journal of Computer and System Sciences, 30(3):395–413, 1985.zbMATHCrossRefMathSciNetGoogle Scholar
  3. 3.
    D. Bovet, P. Crescenzi, and R. Silvestri. A uniform approach to define complexity classes. Theoretical Computer Science, 104(2):263–283, 1992.zbMATHCrossRefMathSciNetGoogle Scholar
  4. 4.
    J. Cai, T. Gundermann, J. Hartmanis, L. Hemachandra, V. Sewelson, K. Wagner, and G. Wechsung. The boolean hierarchy I: Structural properties. SIAM Journal on Computing, 17(6):1232–1252, 1988.zbMATHCrossRefMathSciNetGoogle Scholar
  5. 5.
    A. Durand, M. Hermann, and P. Kolaitis. Subtractive reductions and complete problems for counting complexity classes. In Proceedings of the 25th International Symposium on Mathematical Foundations of Computer Science. Springer-Verlag Lecture Notes in Computer Science, August/September 2000. To appear.Google Scholar
  6. 6.
    S. Fenner, L. Fortnow, A. Naik, and J. Rogers. On inverting onto functions. In Proceedings of the 11th Annual IEEE Conference on Computational Complexity, pages 213–222. IEEE Computer Society Press, May 1996.Google Scholar
  7. 7.
    E. Hemaspaandra, L. Hemaspaandra, and H. Hempel. An introduction to query order. Bulletin of the EATCS, 63:93–107, 1997.zbMATHMathSciNetGoogle Scholar
  8. 8.
    L. Hemaspaandra, H. Hempel, and G. Wechsung. Query order. SIAM Journal on Computing, 28(2):637–651, 1999.CrossRefMathSciNetGoogle Scholar
  9. 9.
    L. Hemaspaandra, A. Naik, M. Ogihara, and A. Selman. Computing solutions uniquely collapses the polynomial hierarchy. SIAM Journal on Computing, 25(4):697–708, 1996.zbMATHCrossRefMathSciNetGoogle Scholar
  10. 10.
    L. Hemaspaandra, M. Ogihara, and G. Wechsung. On reducing the number of solutions of NP functions. Technical Report TR-727, Department of Computer Science, University of Rochester, Rochester, NY, January 2000. Revised, March 2000.Google Scholar
  11. 11.
    L. Hemaspaandra, J. Rothe, and G. Wechsung. Easy sets and hard certificate schemes. Acta Informatica, 34(11):859–879, 1997.zbMATHCrossRefMathSciNetGoogle Scholar
  12. 12.
    B. Jenner and J. Torán. The complexity of obtaining solutions for problems in NP. In L. Hemaspaandra and A. Selman, editors, Complexity Theory Retrospective II. Springer-Verlag, 1997.Google Scholar
  13. 13.
    S. Kosub. On NP-partitions over posets with an application to reducing the set of solutions of NP problems. In Proceedings of the 25th International Symposium on Mathematical Foundations of Computer Science. Springer-Verlag Lecture Notes in Computer Science, August/September 2000. To appear.Google Scholar
  14. 14.
    S. Kosub and K. Wagner. The boolean hierarchy of NP-partitions. In Proceedings of the 17th Annual Symposium on Theoretical Aspects of Computer Science, pages 157–168. Springer-Verlag Lecture Notes in Computer Science #1770, February 2000.Google Scholar
  15. 15.
    A. Naik, J. Rogers, J. Royer, and A. Selman. A hierarchy based on output multiplicity. Theoretical Computer Science, 207(1):131–157, 1998.zbMATHCrossRefMathSciNetGoogle Scholar
  16. 16.
    M. Ogihara. Functions computable with limited access to NP. Information Processing Letters, 58:35–38, 1996.zbMATHCrossRefMathSciNetGoogle Scholar
  17. 17.
    M. Ogiwara and L. Hemachandra. A complexity theory for feasible closure properties. Journal of Computer and System Sciences, 46(3):295–325, 1993.zbMATHCrossRefMathSciNetGoogle Scholar
  18. 18.
    U. Schöning. A low and a high hierarchy within NP. Journal of Computer and System Sciences, 27:14–28, 1983.zbMATHCrossRefMathSciNetGoogle Scholar
  19. 19.
    A. Selman. A taxonomy of complexity classes of functions. Journal of Computer and System Sciences, 48(2):357–381, 1994.zbMATHCrossRefMathSciNetGoogle Scholar
  20. 20.
    A. Selman. Much ado about functions. In Proceedings of the 11th Annual IEEE Conference on Computational Complexity, pages 198–212. IEEE Computer Society Press, May 1996.Google Scholar
  21. 21.
    N. Vereshchagin. Relativizable and nonrelativizable theorems in the polynomial theory of algorithms. Russian Academy of Sciences-Izvestiya-Mathematics, 42(2):261–298, 1994.CrossRefMathSciNetGoogle Scholar
  22. 22.
    K. Wagner. A note on parallel queries and the symmetric-difference hierarchy. Information Processing Letters, 66(1):13–20, 1998.zbMATHCrossRefMathSciNetGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2000

Authors and Affiliations

  • Lane A. Hemaspaandra
    • 1
  • Mitsunori Ogihara
    • 1
  • Gerd Wechsung
    • 2
  1. 1.Department of Computer ScienceUniversity of RochesterRochesterUSA
  2. 2.Institut für InformatikFriedrich-Schiller-Universität JenaJenaGermany

Personalised recommendations