Advertisement

Quantum Public-Key Cryptosystems

  • Tatsuaki Okamoto
  • Keisuke Tanaka
  • Shigenori Uchiyama
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 1880)

Abstract

This paper presents a new paradigm of cryptography, quantum public-key cryptosystems. In quantum public-key cryptosystems, all parties including senders, receivers and adversaries are modeled as quantum (probabilistic) poly-time Turing (QPT) machines and only classical channels (i.e., no quantum channels) are employed. A quantum trapdoor one-way function, f, plays an essential role in our system, in which a QPT machine can compute f with high probability, any QPT machine can invert f with negligible probability, and a QPT machine with trapdoor data can invert f. This paper proposes a concrete scheme for quantum public-key cryptosystems: a quantum public-key encryption scheme or quantum trapdoor one-way function. The security of our schemes is based on the computational assumption (over QPT machines) that a class of subset-sum problems is intractable against any QPT machine. Our scheme is very efficient and practical if Shor’s discrete logarithm algorithm is efficiently realized on a quantum machine.

Keywords

Prime Ideal Quantum Channel Quantum Cryptography Discrete Logarithm Oblivious Transfer 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Barenco, A., Bennett, C.H., Cleve, R., Divincenzo, D. P., Margolus, N., Shor, P., Sleator, T., Smolin, J., and Weinfurter, H. Elementary Gates for Quantum Computation. Physical Review A 52,5 (Nov. 1995), 3457–3467.Google Scholar
  2. 2.
    Bellare, M., AND Rogaway, P. Entity authentication and key distribution. In Advances in Cryptology—CRYPTO’ 93 (22–26 Aug. 1993), D. R. Stinson, Ed., vol. 773 of Lecture Notes in Computer Science, Springer-Verlag, pp. 232–249.CrossRefGoogle Scholar
  3. 3.
    Bellare, M., AND Rogaway, P. Optimal Asymmetric Encryption-How to Encrypt with RSA. In Advances in Cryptology—EUROCRYPT’94 (1994), pp. 92–111.Google Scholar
  4. 4.
    Bellare, M., Desai, A., Pointcheval, D., AND Rogaway, P. Relations among Notions of Security for Public-Key Encryption Schemes. In Advances in Cryptology—CRYPTO’98 (1998), pp. 26–45.Google Scholar
  5. 5.
    Bennett, C. H., Bernstein, E., Brassard, G., AND Vazirani, U. Strengths and weaknesses of quantum computing. SI AM J. Comput. 26,5 (Oct. 1997), 1510–1523.Google Scholar
  6. 6.
    Bennett, C. H., Bessette, F., Brassard, G., Salvail, L., AND Smolin, J. Experimental quantum cryptography. Journal of Cryptology 5,1 (1992), 3–28.CrossRefzbMATHGoogle Scholar
  7. 7.
    Bennett, C. H., AND Brassard, G. An update on quantum cryptography. In Advances in Cryptology: Proceedings of CRYPTO 84 (19–22 Aug. 1984), G. R. Blakley and D. Chaum, Eds., vol. 196 of Lecture Notes in Computer Science, Springer-Verlag, 1985, pp. 475–480.CrossRefGoogle Scholar
  8. 8.
    Bennett, C. H., Brassard, G., Crépeau, C., AND Skubiszewska, M.-H. Practical quantum oblivious transfer. In Advances in Cryptology—CRYPTO’ 91 (11–15 Aug. 1991), J. Feigenbaum, Ed., vol. 576 of Lecture Notes in Computer Science, Springer-Verlag, 1992, pp. 351–366.Google Scholar
  9. 9.
    Bennett, C. H., Brassard, G., AND Ekert, A. K. Quantum cryptography. Scientific America 262,10 (Oct. 1992), 26–33.Google Scholar
  10. 10.
    Bennett, C. H., Brassard, G., AND Mermin, N. D. Quantum cryptography without Bell’s theorem. Physical Review Letters 68,5 (Feb. 1992), 557–559.Google Scholar
  11. 11.
    Brassard, G., Lütkenhaus, N., Tal, M., AND Sanders, B. C. Security Aspects of Practical Quantum Cryptography. In Advances in Cryptology—EUROCRYPT2000 (2000), pp. 289–299.Google Scholar
  12. 12.
    Brassard, G., AND Crépeau, C. Quantum bit commitment and coin tossing protocols. In Advances in Cryptology—CRYPTO’ 90 (11–15 Aug. 1990), A. J. Menezes and S. A. Vanstone, Eds., vol. 537 of Lecture Notes in Computer Science, Springer-Verlag,1991, pp. 49–61.CrossRefGoogle Scholar
  13. 13.
    Chor, B., AND Rivest, R. L. A knapsack-type public key cryptosystem based on arithmetic in finite fields. IEEE Trans. on Information Theory 34 (1988), 901–909.CrossRefMathSciNetGoogle Scholar
  14. 14.
    Cohen, H.A Course in Computational Algebraic Number Theory. Springer, 1993.Google Scholar
  15. 15.
    Cover, T. M. Enumerative source encoding. IEEE Trans. on Information Theory IT-19 (1973), 901–909.Google Scholar
  16. 16.
    Crépeau, C., AND Salvail, L. Quantum oblivious mutual identification. In Quisquater, J.-J., Eds. Advances in Cryptology—EUROCRYPT 95 (21–25 May 1995), vol. 921 of Lecture Notes in Computer Science, Springer-Verlag Guillou and Quisquater[26], pp. 133–146.Google Scholar
  17. 17.
    Deutsch, D., AND Jozsa, R. Rapid solution of problems by quantum computation. Proc. R. Soc. Lond. A 439 (1992), 553–558.MathSciNetGoogle Scholar
  18. 18.
    Diffie, W., and Hellman, M. New directions in cryptography. IEEE Trans. on Information Theory IT-22,6 (1976), 644–654.CrossRefMathSciNetGoogle Scholar
  19. 19.
    Dumais, P., Mayers, D., AND Salvail, L. Perfectly Concealing Quantum Bit Commitment from any Quantum One-Way Permutation. In Advances in Cryptology—EUROCRYPT2000 (2000), pp. 300–315.Google Scholar
  20. 20.
    Fujisaki, E. AND Okamoto, T. How to Enhance the Security of Public-Key Encryption at Minimum Cost. In PKC’99 (1999), pp. 53–68.Google Scholar
  21. 21.
    Fujisaki, E. AND Okamoto, T. Secure Integration of Asymmetric and Symmetric Encryption Schemes. In Advances in Cryptology—CRYPTO’99 (1999), pp. 537–554.Google Scholar
  22. 22.
    Goldreich, O. On the foundations of modern cryptography. In Advances in Cryptology-CRYPTO’ 97 (17–21 Aug. 1997), B. S. KaliskiJr., Ed., vol. 1294 of Lecture Notes in Computer Science, Springer-Verlag, pp. 46–74.CrossRefGoogle Scholar
  23. 23.
    Goldwasser, S., AND Micali, S. Probabilistic encryption. J. Comput. Syst. Sci. 28,2 (Apr. 1984), 270–299.Google Scholar
  24. 24.
    Goldwasser, S., Micali, S., AND Rivest, R. L. A digital signature scheme secure against adaptive chosen-message attacks. SI AM J. Comput. 17,2 (Apr. 1988), 281–308.Google Scholar
  25. 25.
    Grover, L. K. A fast quantum mechanical algorithm for database search. In Proceedings of the Twenty-Eighth Annual ACM Symposium on the Theory of Computing (Philadelphia, Pennsylvania, 22–24 May 1996), pp. 212–219.Google Scholar
  26. 26.
    Guillou, L.C., AND Quisquater, J.-J., Eds. Advances in Cryptology—EUROCRYPT 95 (21–25 May 1995), vol. 921 of Lecture Notes in Computer Science, Springer-Verlag.zbMATHGoogle Scholar
  27. 27.
    Lang, S.Algebraic Number Theory, Second Edition, Springer, 1994.Google Scholar
  28. 28.
    Marcus, D. A.Number Fields, Springer, 1977.Google Scholar
  29. 29.
    Mayers, D. Quantum key distribution and string oblivious transfer in noisy channels. In Advances in Cryptology—CRYPTO’ 96 (18–22 Aug. 1996), N. Koblitz, Ed., vol. 1109 of Lecture Notes in Computer Science, Springer-Verlag, pp. 343–357.Google Scholar
  30. 30.
    Merkle, R. C., AND Hellman, M. E. Hiding information and signatures in trapdoor knapsacks. IEEE Trans. on Information Theory 24 (1978), 525–530.CrossRefGoogle Scholar
  31. 31.
    Morii, M., AND Kasahara, M. New Public Key Cryptosystem Using Discrete Logarithms over GF(p). Trans. of the IEICE J71-D,2 (Feb. 1988), 448–453 (In Japanese).Google Scholar
  32. 32.
    Naccache, D., AND Stern, J. A New Public-Key Cryptosystem. In Advances in Cryptology—EUROCRYPT’97 (1997), pp. 27–36.Google Scholar
  33. 33.
    Odlyzko, A. M. Cryptanalytic attacks on the multiplicative knapsack cryptosystem and on Shamir’s fast signature scheme. IEEE Trans. on Information Theory IT-30 (1984), 594–601.CrossRefMathSciNetGoogle Scholar
  34. 34.
    Okamoto, T., AND Tanaka, K. A New Approach to Knapsack Cryptosystems. manuscript (2000).Google Scholar
  35. 35.
    Orton, G. A Multiple-Iterated Trapdoor for Dense Compact Knapsacks. In Advances in Cryptology—EUROCRYPT’94 (1994), pp. 112–130.Google Scholar
  36. 36.
    Schnorr, C. P., AND Hörner, H. H. Attacking the Chor-Rivest cryptosystem by improved lattice reduction. In Quisquater, J.-J., Eds. Advances in Cryptology—EUROCRYPT 95 (21–25 May 1995), vol. 921 of Lecture Notes in Computer Science, Springer-Verlag Guillou and Quisquater[26], pp. 1–12.Google Scholar
  37. 37.
    Shor, P.W. Polynomial-time algorithms for prime factorization and discrete logarithms on a quantum computer. SIAM J. Comput. 26,5 (Oct. 1997), 1484–1509.Google Scholar
  38. 38.
    Simon, D. R. On the power of quantum computation. SIAM J. Comput. 26,5 (Oct. 1997), 1474–1483.Google Scholar
  39. 39.
    Vaudenay, S. Cryptanalysis of the Chor-Rivest cryptosystem. In Advances in Cryptology—CRYPTO’98 (1998), pp. 243–256.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2000

Authors and Affiliations

  • Tatsuaki Okamoto
    • 1
  • Keisuke Tanaka
    • 1
  • Shigenori Uchiyama
    • 1
  1. 1.NTT LaboratoriesKanagawa-kenJapan

Personalised recommendations