Linking Classical and Quantum Key Agreement: Is There “Bound Information”?

  • Nicolas Gisin
  • Stefan Wolf
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 1880)


After carrying out a protocol for quantum key agreement over a noisy quantum channel, the parties Alice and Bob must process the raw key in order to end up with identical keys about which the adversary has virtually no information. In principle, both classical and quantum protocols can be used for this processing. It is a natural question which type of protocols is more powerful. We show that the limits of tolerable noise are identical for classical and quantum protocols in many cases. More specifically, we prove that a quantum state between two parties is entangled if and only if the classical random variables resulting from optimal measurements provide some mutual classical information between the parties. In addition, we present evidence which strongly suggests that the potentials of classical and of quantum protocols are equal in every situation. An important consequence, in the purely classical regime, of such a correspondence would be the existence of a classical counterpart of so-called bound entanglement, namely “bound information” that cannot be used for generating a secret key by any protocol. This stands in sharp contrast to what was previously believed.


Secret-key agreement intrinsic information secret-key rate quantum privacy amplification purification entanglement 


  1. 1.
    H. Bechmann-Pasquinucci and N. Gisin, Incoherent and coherent eavesdropping in the six-state protocol of quantum cryptography, Phys. Rev. A, Vol. 59, No. 6, pp. 4238–4248, 1999.CrossRefMathSciNetGoogle Scholar
  2. 2.
    C. H. Bennett, G. Brassard, S. Popescu, B. Schumacher, J. A. Smolin, and W. K. Wooters, Purification of noisy entanglement and faithful teleportation via noisy channels, Phys. Rev. Lett., Vol. 76, pp. 722–725, 1996.CrossRefGoogle Scholar
  3. 3.
    C. H. Bennett and G. Brassard, Quantum cryptography: public key distribution and coin tossing, Proceedings of the IEEE International Conference on Computer, Systems, and Signal Processing, IEEE, pp. 175–179, 1984.Google Scholar
  4. 4.
    D. Bruss, Optimal eavesdropping in quantum cryptography with six states, Phys. Rev. Lett., Vol. 81, No. 14, pp. 3018–3021, 1998.CrossRefGoogle Scholar
  5. 5.
    V. Bužek and M. Hillery, Quantum copying: beyond the no-cloning theorem, Phys. Rev. A, Vol. 54, pp. 1844–1852, 1996.CrossRefMathSciNetGoogle Scholar
  6. 6.
    J. F. Clauser, M. A. Horne, A. Shimony and R. A. Holt, Proposed experiment to test local hidden-variable theories, Phys. Rev. Lett., Vol. 23, pp. 880–884, 1969.CrossRefGoogle Scholar
  7. 7.
    I. Csiszár and J. Körner, Broadcast channels with confidential messages, IEEE Transactions on Information Theory, Vol. IT-24, pp. 339–348, 1978.zbMATHCrossRefGoogle Scholar
  8. 8.
    D. Deutsch, A. Ekert, R. Jozsa, C. Macchiavello, S. Popescu, and A. Sanpera, Quantum privacy amplification and the security of quantum cryptography over noisy channels, Phys. Rev. Lett., Vol. 77, pp. 2818–2821, 1996.CrossRefGoogle Scholar
  9. 9.
    D. P. DiVincenzo, P. W. Shor, J. A. Smolin, B. M. Terhal, and A. V. Thapliyal, Evidence for bound entangled states with negative partial transpose, quant-ph/9910026, 1999.Google Scholar
  10. 10.
    A. E. Ekert, Quantum cryptography based on Bell’s theorem, Phys. Rev. Lett., Vol. 67, pp. 661–663, 1991. See also Physics World, March 1998.zbMATHCrossRefMathSciNetGoogle Scholar
  11. 11.
    C. Fuchs, N. Gisin, R. B. Griffiths, C. S. Niu, and A. Peres, Optimal eavesdropping in quantum cryptography-I: information bound and optimal strategy, Phys. Rev. A, Vol. 56, pp. 1163–1172, 1997.CrossRefMathSciNetGoogle Scholar
  12. 12.
    N. Gisin, Stochastic quantum dynamics and relativity, Helv. Phys. Acta, Vol. 62, pp. 363–371, 1989.MathSciNetGoogle Scholar
  13. 13.
    N. Gisin and B. Huttner, Quantum cloning, eavesdropping, and Bell inequality, Phys. Lett. A, Vol. 228, pp. 13–21, 1997.zbMATHCrossRefMathSciNetGoogle Scholar
  14. 14.
    N. Gisin and S. Massar, Optimal quantum cloning machines, Phys. Rev. Lett., Vol. 79, pp. 2153–2156, 1997.CrossRefGoogle Scholar
  15. 15.
    N. Gisin and S. Wolf, Quantum cryptography on noisy channels: quantum versus classical key agreement protocols, Phys. Rev. Lett., Vol. 83, pp. 4200–4203, 1999.CrossRefGoogle Scholar
  16. 16.
    M. Horodecki, P. Horodecki, and R. Horodecki, Mixed-state entanglement and distillation: is there a “bound” entanglement in nature?, Phys. Rev. Lett., Vol. 80, pp. 5239–5242, 1998.zbMATHCrossRefMathSciNetGoogle Scholar
  17. 17.
    P. Horodecki, Separability criterion and inseparable mixed states with positive partial transposition, Phys. Lett. A, Vol. 232, p. 333, 1997.zbMATHCrossRefMathSciNetGoogle Scholar
  18. 18.
    P. Horodecki, M. Horodecki, and R. Horodecki, Bound entanglement can be activated, Phys. Rev. Lett., Vol. 82, pp. 1056–1059, 1999. quant-ph/9806058.zbMATHCrossRefMathSciNetGoogle Scholar
  19. 19.
    L. P. Hughston, R. Jozsa, and W. K. Wootters, A complete classification of quantum ensembles having a given density matrix, Phys. Lett. A, Vol. 183, pp. 14–18, 1993.CrossRefMathSciNetGoogle Scholar
  20. 20.
    U. Maurer, Secret key agreement by public discussion from common information, IEEE Transactions on Information Theory, Vol. 39, No. 3, pp. 733–742, 1993.zbMATHCrossRefMathSciNetGoogle Scholar
  21. 21.
    U. Maurer and S. Wolf, Information-theoretic key agreement: from weak to strong secrecy for free, Proceedings of EUROCRYPT 2000, Lecture Notes in Computer Science, Vol. 1807, pp. 352–368, Springer-Verlag, 2000.Google Scholar
  22. 22.
    U. Maurer and S. Wolf, Unconditionally secure key agreement and the intrinsic conditional information, IEEE Transactions on Information Theory, Vol. 45, No. 2, pp. 499–514, 1999.zbMATHCrossRefMathSciNetGoogle Scholar
  23. 23.
    N. D. Mermin, The Ithaca interpretation of quantum mechanics, Pramana, Vol. 51, pp. 549–565, 1998.CrossRefGoogle Scholar
  24. 24.
    A. Peres, Quantum theory: concepts and methods, Kluwer Academic Publishers, 1993.Google Scholar
  25. 25.
    A. Peres, Separability criterion for density matrices, Phys. Rev. Lett., Vol. 77, pp. 1413–1415, 1996.zbMATHCrossRefMathSciNetGoogle Scholar
  26. 26.
    S. Popescu and D. Rohrlich, Thermodynamics and the measure of entanglement, quant-ph/9610044, 1996.Google Scholar
  27. 27.
    G. Ribordy, J. D. Gautier, N. Gisin, O. Guinnard, and H. Zbinden, Automated plug and play quantum key distribution, Electron. Lett., Vol. 34, pp. 2116–2117, 1998.CrossRefGoogle Scholar
  28. 28.
    C. E. Shannon, Communication theory of secrecy systems, Bell System Technical Journal, Vol. 28, pp. 656–715, 1949.MathSciNetGoogle Scholar
  29. 29.
    S. Wolf, Information-theoretically and computationally secure key agreement in cryptography, ETH dissertation No. 13138, Swiss Federal Institute of Technology (ETH Zurich), May 1999.Google Scholar
  30. 30.
    A. D. Wyner, The wire-tap channel, Bell System Technical Journal, Vol. 54, No. 8, pp. 1355–1387, 1975.MathSciNetGoogle Scholar
  31. 31.
    H. Zbinden, H. Bechmann, G. Ribordy, and N. Gisin, Quantum cryptography, Applied Physics B, Vol. 67, pp. 743–748, 1998.CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2000

Authors and Affiliations

  • Nicolas Gisin
    • 1
  • Stefan Wolf
    • 2
  1. 1.Group of Applied PhysicsUniversity of GenevaGenevaSwitzerland
  2. 2.Department of Computer ScienceETH ZürichZürichSwitzerland

Personalised recommendations